Araştırma Makalesi
BibTex RIS Kaynak Göster

The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye)

Yıl 2025, Cilt: 11 Sayı: 4, 423 - 434, 31.12.2025
https://doi.org/10.58626/memba.1700237

Öz

Fluoride (F⁻) and nitrate (NO₃⁻) are among the most detected constituents in drinking water and should be continuously monitored due to their potential to pose significant and serious health risks. Both fluoride and nitrate play a critical role in supporting dental and skeletal health, with drinking water being one of the primary sources of daily intake. However, both insufficient and excessive intake of fluoride and nitrate may result in significant health concerns, particularly among children and adolescents. This study investigates fluoride concentrations in drinking water and assesses the corresponding non-carcinogenic health risks for different age groups in Tunceli Province, located in the Eastern Anatolia Region of Turkey. During the rainy season of 2021, a total of 18 water samples were collected. Fluoride and nitrate concentrations were analyzed using spectrophotometric techniques. Estimated Daily Intake (EDI) and Hazard Quotient (HQ) values were calculated for infants, children, adolescents, and adults. The detected fluoride concentrations ranged between 0.06 and 0.31 mg/L, while nitrate concentrations varied from 0.45 to 64.38 ppm. Although all fluoride HQ values were below 1, indicating negligible non-carcinogenic risk, children were identified as the most susceptible group. In contrast, HQ values for nitrate exceeded 1 in infants and children, indicating considerable public health concern. These findings underscore the need for continuous monitoring and the development of age-specific public health policies, particularly to minimize health risks associated with nitrate exposure.

Kaynakça

  • Abanyie, S. K., Apea, O. B., Abagale, S. A., Amuah, E. E. Y., & Sunkari, E. D. (2023). Sources and factors influencing groundwater quality and associated health implications: A review. Emerging Contaminants, 100207. https://doi.org/10.1016/j.emcon.2023.100207
  • Arcentales-Ríos, R., Carrión-Méndez, A., Cipriani-Ávila, I., Acosta, S., Capparelli, M., Moulatlet, G., & Pinos-Vélez, V. (2022). Assessment of metals, emerging contaminants, and physicochemical characteristics in drinking water and wastewater of Cuenca, Ecuador. Journal of Trace Elements and Minerals, 2, 100030. https://doi.org/10.1016/j.jtemin.2022.100030
  • Arumi, J. L., Núñez, J., Salgado, L., & Claret, M. (2006). Risk analysis of nitrate contamination in wells supplying drinking water in a rural area of Chile. Revista Panamericana de Salud Pública, 20(6), 385–392. https://doi.org/10.1590/s1020-49892006001100004
  • Aslani, H., Zarei, M., Taghipour, H., Khashabi, E., Ghanbari, H., & Ejlali, A. (2019). Monitoring, mapping and health risk assessment of fluoride in drinking water supplies in rural areas of Maku and Poldasht, Iran. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00282-x
  • Bhatnagar, A., & Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493–504. https://doi.org/10.1016/j.cej.2011.01.103
  • Bordoni, N. E., Salgado, P. A., & Squassi, A. F. (2021). Comparison between indexes for diagnosis and guidance for treatment of dental caries. Acta Odontológica Latinoamericana, 34, 289–297. https://doi.org/10.54589/aol.34/3/289
  • Brindha, K., Rajesh, R., Murugan, R., & Elango, L. (2011). Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 172, 481–492. https://doi.org/10.1007/s10661-010-1348-0
  • Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risks. Exposure and Health, 9, 183–195. https://doi.org/10.1007/s12403-016-0231-9
  • Dehghani, M. H., Asghari, F. B., & Yousefi, M. (2019). Effect of salt basins on groundwater quality changes in Tabriz Plain. Desalination and Water Treatment, 137, 403–411. https://doi.org/10.5004/dwt.2019.22991
  • EPA. (1992). Framework for Ecological Risk Assessment. U.S. Environmental Protection Agency.
  • Filho, A. P. R., Chávez, B. A., Giacaman, R. A., Frazão, P., & Cury, J. A. (2021). Community interventions and strategies for caries control in Latin America and the Caribbean. Brazilian Oral Research, 35, 1–17. https://doi.org/10.1590/1807-3107bor-2021.vol35.0054
  • Ghani, J., Ullah, Z., Nawab, J., Iqbal, J., Waqas, M., Ali, A., … Shah, M. (2022). Hydrogeochemical characterization and suitability assessment of drinking groundwater. Frontiers in Environmental Science, 10, 874464. https://doi.org/10.3389/fenvs.2022.874464
  • Guissouma, W., Hakami, A., Al-Rajab, A. J., & Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere, 177, 102–108. https://doi.org/10.1016/j.chemosphere.2017.03.011
  • Guo, H., Zhang, Y., Xing, L., & Jia, Y. (2012). Spatial variation in arsenic and fluoride concentrations of shallow groundwater. Applied Geochemistry, 27(11), 2187–2196. https://doi.org/10.1016/j.apgeochem.2012.01.016
  • Ijumulana, J., Ligate, F., Irunde, R., Bhattacharya, P., Maity, J. P., Ahmad, A., & Mtalo, F. (2021). Spatial uncertainties in fluoride levels and health risks. Groundwater for Sustainable Development, 14, 100618. https://doi.org/10.1016/j.gsd.2021.100618
  • Iqbal, J., Amin, G., Su, C., Haroon, E., & Baloch, M. Y. J. (2023a). Assessment of landcover impacts on groundwater quality. Environmental Science and Pollution Research, 1–21. https://doi.org/10.21203/rs.3.rs-2771650/v1
  • Iqbal, J., Su, C., Wang, M., Abbas, H., Baloch, M. Y. J., Ghani, J., Huq, M. (2023b). Groundwater fluoride and nitrate contamination. Environmental Science and Pollution Research, 1–20. https://doi.org/10.1007/s11356-023-25958-x
  • Iqbal, J., Su, C., Rashid, A., Yang, N., Baloch, M. Y. J., Talpur, S. A., … Sajjad, M. M. (2021). Hydrogeochemical assessment of groundwater. Water, 13(24), 3589. https://doi.org/10.3390/w13243589
  • Jannat, J. N., Khan, M. S. I., Islam, H. T., Islam, M. S., Khan, R., Siddique, M. A. B., & Islam, A. R. M. T. (2022). Hydro-chemical assessment of fluoride and nitrate. Journal of Cleaner Production, 372, 133675. https://doi.org/10.1016/j.jclepro.2022.133675
  • Jat Baloch, M. Y., Zhang, W., Chai, J., Li, S., Alqurashi, M., Rehman, G., Munir, M. (2021). Shallow groundwater quality assessment. Water, 13(23), 3361. https://doi.org/10.3390/w13233361
  • Kutlu, B., Özcan, G., & Özcan, T. (2017). Tunceli İli Su Kaynakları ve Özellikleri. Munzur Üniversitesi Yayınları. Lin, K., Zhu, Y., Zhang, Y., & Lin, H. (2019). Determination of ammonia nitrogen in natural waters: Recent advances and applications. Trends in Environmental Analytical Chemistry, 24, e00073. https://doi.org/10.1016/j.teac.2019.e00073
  • Mohammadi, A. A., Yaghmaeian, K., Hossein, F., Nabizadeh, R., Dehghani, M. H., Khaili, J. K., & Mahvi, A. H. (2017). Temporal and spatial variation of chemical parameters in drinking water. Desalination and Water Treatment, 68, 170–176. https://doi.org/10.5004/dwt.2017.20341
  • Mohsenibandpei, A., et al. (2016). Water solution polishing of nitrate using potassium permanganate modified zeolite. Global NEST Journal, 18(3). https://doi.org/10.30955/gnj.001833
  • Pitts, N. B., Zero, D. T., Marsh, P. D., Ekstrand, K., Weintraub, J. A., & Ramos-Gomez, F. (2017). Dental caries. Nature Reviews Disease Primers, 3, 17030. https://doi.org/10.1038/nrdp.2017.30
  • Qasemi, M., Farhang, M., Morovati, M., Mahmoudi, M., Ebrahimi, S., Abedi, A., … Ghaderpoury, A. (2020). Human health risks from fluoride and nitrate. International Journal of Environmental Analytical Chemistry, 102(2), 307–318. https://doi.org/10.1080/03067319.2020.1720668
  • Rasool, A., Farooqi, A., Xiao, T., Ali, W., Noor, S., & Abiola, O. (2017). Fluoride contamination in groundwater: A global perspective. Environmental Geochemistry and Health, 40, 1–17. https://doi.org/10.1007/s10653-017-0054-z
  • Sadler, R., Maetam, B., Edokpolo, B., Connell, D., Yu, J., Stewart, D., & Laksono, B. (2016). Health risk assessment for nitrate in village wells. Environmental Pollution, 216, 738–745. https://doi.org/10.1016/j.envpol.2016.06.041
  • Salve, P., Maurya, A., Kumbhare, P., Ramteke, D., & Wate, S. (2008). Assessment of groundwater quality with respect to fluoride. Bulletin of Environmental Contamination and Toxicology, 81, 289–293. https://doi.org/10.1007/s00128-008-9466-x
  • Saxena, S., Sahay, A., & Goel, P. (2012). Effect of fluoride exposure on intelligence of school children. Journal of Neurosciences in Rural Practice, 3, 144–149. https://doi.org/10.4103/0976-3147.98213
  • Talpur, S. A., Noonari, T. M., Rashid, A., Ahmed, A., Jat Baloch, M. Y., Talpur, H. A., & Soomro, M. H. (2020). Hydrogeochemical signatures and suitability assessment of groundwater with elevated fluoride. SN Applied Sciences, 2, 1–15. https://doi.org/10.1007/s42452-020-2821-1
  • Tokatlı, C., & Güner, Ş. (2020). Fluoride levels in drinking water and water quality assessment. Acta Aquatica Turcica, 16(2), 238–245. https://doi.org/10.22392/actaquatr.644087
  • Ullah, Z., Rashid, A., Ghani, J., Nawab, J., Zeng, X.-C., Shah, M., … Iqbal, J. (2022). Groundwater contamination through potentially harmful metals. Frontiers in Environmental Science, 10, 1021596. https://doi.org/10.3389/fenvs.2022.1021596
  • Vélez León, E. M., Albaladejo Martínez, A., Preciado Sarmiento, M. A., Cordero López, M. A., Armas, A. del C., & Encalada Verdugo, L. S. (2023). Caries experience in preschoolers. Children, 10(7), Article 4. https://doi.org/10.3390/children10071123
  • Wang, M., Liu, L., Li, H., Li, Y., Liu, H., Hou, C., Wang, A. (2020). Thyroid function, intelligence and low–moderate fluoride exposure. Environment International, 134, 105229. https://doi.org/10.1016/j.envint.2019.105229 WHO. (2017). Guidelines for Drinking-Water Quality (4th ed.). World Health Organization.
  • Yidana, S. M., Ophori, D., Banoeng-Yakubo, B., & Samed, A. A. (2012). Hydrochemistry and fluoride enrichment causes. ARPN Journal of Engineering and Applied Sciences, 7(1), 50–68.
  • Yousefi, M., Ghoochani, M., & Mahvi, A. H. (2018). Health risk assessment to fluoride. Ecotoxicology and Environmental Safety, 148, 426–430. https://doi.org/10.1016/j.ecoenv.2017.10.057
  • Zango, M. S., Pelig-Ba, K. B., Anim-Gyampo, M., & Gibrilla, A. (2021). Hydrogeochemical and isotopic controls on fluoride sources. Groundwater for Sustainable Development, 12, 100526. https://doi.org/10.1016/j.gsd.2020.100526
  • Zhai, Y., Zhao, X., Teng, Y., Li, X., Zhang, J., Wu, J., & Zuo, R. (2017). Groundwater nitrate pollution and health risk assessment. Ecotoxicology and Environmental Safety, 137, 130–142. https://doi.org/10.1016/j.ecoenv.2016.11.010 Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., & Wu, B. (2022). Machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116. https://doi.org/10.1016/j.eehl.2022.06.001

The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye)

Yıl 2025, Cilt: 11 Sayı: 4, 423 - 434, 31.12.2025
https://doi.org/10.58626/memba.1700237

Öz

Fluoride (F⁻) and nitrate (NO₃⁻) are among the most detected constituents in drinking water and should be continuously monitored due to their potential to pose significant and serious health risks. Both fluoride and nitrate play a critical role in supporting dental and skeletal health, with drinking water being one of the primary sources of daily intake. However, both insufficient and excessive intake of fluoride and nitrate may result in significant health concerns, particularly among children and adolescents. This study investigates fluoride concentrations in drinking water and assesses the corresponding non-carcinogenic health risks for different age groups in Tunceli Province, located in the Eastern Anatolia Region of Turkey. During the rainy season of 2021, a total of 18 water samples were collected. Fluoride and nitrate concentrations were analyzed using spectrophotometric techniques. Estimated Daily Intake (EDI) and Hazard Quotient (HQ) values were calculated for infants, children, adolescents, and adults. The detected fluoride concentrations ranged between 0.06 and 0.31 mg/L, while nitrate concentrations varied from 0.45 to 64.38 ppm. Although all fluoride HQ values were below 1, indicating negligible non-carcinogenic risk, children were identified as the most susceptible group. In contrast, HQ values for nitrate exceeded 1 in infants and children, indicating considerable public health concern. These findings underscore the need for continuous monitoring and the development of age-specific public health policies, particularly to minimize health risks associated with nitrate exposure.

Kaynakça

  • Abanyie, S. K., Apea, O. B., Abagale, S. A., Amuah, E. E. Y., & Sunkari, E. D. (2023). Sources and factors influencing groundwater quality and associated health implications: A review. Emerging Contaminants, 100207. https://doi.org/10.1016/j.emcon.2023.100207
  • Arcentales-Ríos, R., Carrión-Méndez, A., Cipriani-Ávila, I., Acosta, S., Capparelli, M., Moulatlet, G., & Pinos-Vélez, V. (2022). Assessment of metals, emerging contaminants, and physicochemical characteristics in drinking water and wastewater of Cuenca, Ecuador. Journal of Trace Elements and Minerals, 2, 100030. https://doi.org/10.1016/j.jtemin.2022.100030
  • Arumi, J. L., Núñez, J., Salgado, L., & Claret, M. (2006). Risk analysis of nitrate contamination in wells supplying drinking water in a rural area of Chile. Revista Panamericana de Salud Pública, 20(6), 385–392. https://doi.org/10.1590/s1020-49892006001100004
  • Aslani, H., Zarei, M., Taghipour, H., Khashabi, E., Ghanbari, H., & Ejlali, A. (2019). Monitoring, mapping and health risk assessment of fluoride in drinking water supplies in rural areas of Maku and Poldasht, Iran. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00282-x
  • Bhatnagar, A., & Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493–504. https://doi.org/10.1016/j.cej.2011.01.103
  • Bordoni, N. E., Salgado, P. A., & Squassi, A. F. (2021). Comparison between indexes for diagnosis and guidance for treatment of dental caries. Acta Odontológica Latinoamericana, 34, 289–297. https://doi.org/10.54589/aol.34/3/289
  • Brindha, K., Rajesh, R., Murugan, R., & Elango, L. (2011). Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 172, 481–492. https://doi.org/10.1007/s10661-010-1348-0
  • Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risks. Exposure and Health, 9, 183–195. https://doi.org/10.1007/s12403-016-0231-9
  • Dehghani, M. H., Asghari, F. B., & Yousefi, M. (2019). Effect of salt basins on groundwater quality changes in Tabriz Plain. Desalination and Water Treatment, 137, 403–411. https://doi.org/10.5004/dwt.2019.22991
  • EPA. (1992). Framework for Ecological Risk Assessment. U.S. Environmental Protection Agency.
  • Filho, A. P. R., Chávez, B. A., Giacaman, R. A., Frazão, P., & Cury, J. A. (2021). Community interventions and strategies for caries control in Latin America and the Caribbean. Brazilian Oral Research, 35, 1–17. https://doi.org/10.1590/1807-3107bor-2021.vol35.0054
  • Ghani, J., Ullah, Z., Nawab, J., Iqbal, J., Waqas, M., Ali, A., … Shah, M. (2022). Hydrogeochemical characterization and suitability assessment of drinking groundwater. Frontiers in Environmental Science, 10, 874464. https://doi.org/10.3389/fenvs.2022.874464
  • Guissouma, W., Hakami, A., Al-Rajab, A. J., & Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere, 177, 102–108. https://doi.org/10.1016/j.chemosphere.2017.03.011
  • Guo, H., Zhang, Y., Xing, L., & Jia, Y. (2012). Spatial variation in arsenic and fluoride concentrations of shallow groundwater. Applied Geochemistry, 27(11), 2187–2196. https://doi.org/10.1016/j.apgeochem.2012.01.016
  • Ijumulana, J., Ligate, F., Irunde, R., Bhattacharya, P., Maity, J. P., Ahmad, A., & Mtalo, F. (2021). Spatial uncertainties in fluoride levels and health risks. Groundwater for Sustainable Development, 14, 100618. https://doi.org/10.1016/j.gsd.2021.100618
  • Iqbal, J., Amin, G., Su, C., Haroon, E., & Baloch, M. Y. J. (2023a). Assessment of landcover impacts on groundwater quality. Environmental Science and Pollution Research, 1–21. https://doi.org/10.21203/rs.3.rs-2771650/v1
  • Iqbal, J., Su, C., Wang, M., Abbas, H., Baloch, M. Y. J., Ghani, J., Huq, M. (2023b). Groundwater fluoride and nitrate contamination. Environmental Science and Pollution Research, 1–20. https://doi.org/10.1007/s11356-023-25958-x
  • Iqbal, J., Su, C., Rashid, A., Yang, N., Baloch, M. Y. J., Talpur, S. A., … Sajjad, M. M. (2021). Hydrogeochemical assessment of groundwater. Water, 13(24), 3589. https://doi.org/10.3390/w13243589
  • Jannat, J. N., Khan, M. S. I., Islam, H. T., Islam, M. S., Khan, R., Siddique, M. A. B., & Islam, A. R. M. T. (2022). Hydro-chemical assessment of fluoride and nitrate. Journal of Cleaner Production, 372, 133675. https://doi.org/10.1016/j.jclepro.2022.133675
  • Jat Baloch, M. Y., Zhang, W., Chai, J., Li, S., Alqurashi, M., Rehman, G., Munir, M. (2021). Shallow groundwater quality assessment. Water, 13(23), 3361. https://doi.org/10.3390/w13233361
  • Kutlu, B., Özcan, G., & Özcan, T. (2017). Tunceli İli Su Kaynakları ve Özellikleri. Munzur Üniversitesi Yayınları. Lin, K., Zhu, Y., Zhang, Y., & Lin, H. (2019). Determination of ammonia nitrogen in natural waters: Recent advances and applications. Trends in Environmental Analytical Chemistry, 24, e00073. https://doi.org/10.1016/j.teac.2019.e00073
  • Mohammadi, A. A., Yaghmaeian, K., Hossein, F., Nabizadeh, R., Dehghani, M. H., Khaili, J. K., & Mahvi, A. H. (2017). Temporal and spatial variation of chemical parameters in drinking water. Desalination and Water Treatment, 68, 170–176. https://doi.org/10.5004/dwt.2017.20341
  • Mohsenibandpei, A., et al. (2016). Water solution polishing of nitrate using potassium permanganate modified zeolite. Global NEST Journal, 18(3). https://doi.org/10.30955/gnj.001833
  • Pitts, N. B., Zero, D. T., Marsh, P. D., Ekstrand, K., Weintraub, J. A., & Ramos-Gomez, F. (2017). Dental caries. Nature Reviews Disease Primers, 3, 17030. https://doi.org/10.1038/nrdp.2017.30
  • Qasemi, M., Farhang, M., Morovati, M., Mahmoudi, M., Ebrahimi, S., Abedi, A., … Ghaderpoury, A. (2020). Human health risks from fluoride and nitrate. International Journal of Environmental Analytical Chemistry, 102(2), 307–318. https://doi.org/10.1080/03067319.2020.1720668
  • Rasool, A., Farooqi, A., Xiao, T., Ali, W., Noor, S., & Abiola, O. (2017). Fluoride contamination in groundwater: A global perspective. Environmental Geochemistry and Health, 40, 1–17. https://doi.org/10.1007/s10653-017-0054-z
  • Sadler, R., Maetam, B., Edokpolo, B., Connell, D., Yu, J., Stewart, D., & Laksono, B. (2016). Health risk assessment for nitrate in village wells. Environmental Pollution, 216, 738–745. https://doi.org/10.1016/j.envpol.2016.06.041
  • Salve, P., Maurya, A., Kumbhare, P., Ramteke, D., & Wate, S. (2008). Assessment of groundwater quality with respect to fluoride. Bulletin of Environmental Contamination and Toxicology, 81, 289–293. https://doi.org/10.1007/s00128-008-9466-x
  • Saxena, S., Sahay, A., & Goel, P. (2012). Effect of fluoride exposure on intelligence of school children. Journal of Neurosciences in Rural Practice, 3, 144–149. https://doi.org/10.4103/0976-3147.98213
  • Talpur, S. A., Noonari, T. M., Rashid, A., Ahmed, A., Jat Baloch, M. Y., Talpur, H. A., & Soomro, M. H. (2020). Hydrogeochemical signatures and suitability assessment of groundwater with elevated fluoride. SN Applied Sciences, 2, 1–15. https://doi.org/10.1007/s42452-020-2821-1
  • Tokatlı, C., & Güner, Ş. (2020). Fluoride levels in drinking water and water quality assessment. Acta Aquatica Turcica, 16(2), 238–245. https://doi.org/10.22392/actaquatr.644087
  • Ullah, Z., Rashid, A., Ghani, J., Nawab, J., Zeng, X.-C., Shah, M., … Iqbal, J. (2022). Groundwater contamination through potentially harmful metals. Frontiers in Environmental Science, 10, 1021596. https://doi.org/10.3389/fenvs.2022.1021596
  • Vélez León, E. M., Albaladejo Martínez, A., Preciado Sarmiento, M. A., Cordero López, M. A., Armas, A. del C., & Encalada Verdugo, L. S. (2023). Caries experience in preschoolers. Children, 10(7), Article 4. https://doi.org/10.3390/children10071123
  • Wang, M., Liu, L., Li, H., Li, Y., Liu, H., Hou, C., Wang, A. (2020). Thyroid function, intelligence and low–moderate fluoride exposure. Environment International, 134, 105229. https://doi.org/10.1016/j.envint.2019.105229 WHO. (2017). Guidelines for Drinking-Water Quality (4th ed.). World Health Organization.
  • Yidana, S. M., Ophori, D., Banoeng-Yakubo, B., & Samed, A. A. (2012). Hydrochemistry and fluoride enrichment causes. ARPN Journal of Engineering and Applied Sciences, 7(1), 50–68.
  • Yousefi, M., Ghoochani, M., & Mahvi, A. H. (2018). Health risk assessment to fluoride. Ecotoxicology and Environmental Safety, 148, 426–430. https://doi.org/10.1016/j.ecoenv.2017.10.057
  • Zango, M. S., Pelig-Ba, K. B., Anim-Gyampo, M., & Gibrilla, A. (2021). Hydrogeochemical and isotopic controls on fluoride sources. Groundwater for Sustainable Development, 12, 100526. https://doi.org/10.1016/j.gsd.2020.100526
  • Zhai, Y., Zhao, X., Teng, Y., Li, X., Zhang, J., Wu, J., & Zuo, R. (2017). Groundwater nitrate pollution and health risk assessment. Ecotoxicology and Environmental Safety, 137, 130–142. https://doi.org/10.1016/j.ecoenv.2016.11.010 Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., & Wu, B. (2022). Machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116. https://doi.org/10.1016/j.eehl.2022.06.001
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Su Kalitesi ve Su Kirliliği
Bölüm Araştırma Makalesi
Yazarlar

Banu Kutlu 0000-0001-6348-2754

Serdar Çetindağ 0000-0001-7849-9284

Gönderilme Tarihi 16 Mayıs 2025
Kabul Tarihi 22 Ekim 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 4

Kaynak Göster

APA Kutlu, B., & Çetindağ, S. (2025). The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye). MEMBA Su Bilimleri Dergisi, 11(4), 423-434. https://doi.org/10.58626/memba.1700237
AMA Kutlu B, Çetindağ S. The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye). MEMBA Su Bilimleri Dergisi. Aralık 2025;11(4):423-434. doi:10.58626/memba.1700237
Chicago Kutlu, Banu, ve Serdar Çetindağ. “The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye)”. MEMBA Su Bilimleri Dergisi 11, sy. 4 (Aralık 2025): 423-34. https://doi.org/10.58626/memba.1700237.
EndNote Kutlu B, Çetindağ S (01 Aralık 2025) The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye). MEMBA Su Bilimleri Dergisi 11 4 423–434.
IEEE B. Kutlu ve S. Çetindağ, “The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye)”, MEMBA Su Bilimleri Dergisi, c. 11, sy. 4, ss. 423–434, 2025, doi: 10.58626/memba.1700237.
ISNAD Kutlu, Banu - Çetindağ, Serdar. “The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye)”. MEMBA Su Bilimleri Dergisi 11/4 (Aralık2025), 423-434. https://doi.org/10.58626/memba.1700237.
JAMA Kutlu B, Çetindağ S. The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye). MEMBA Su Bilimleri Dergisi. 2025;11:423–434.
MLA Kutlu, Banu ve Serdar Çetindağ. “The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye)”. MEMBA Su Bilimleri Dergisi, c. 11, sy. 4, 2025, ss. 423-34, doi:10.58626/memba.1700237.
Vancouver Kutlu B, Çetindağ S. The Health Effects of Fluoride and Nitrate in Drinking Water in Tunceli (Türkiye). MEMBA Su Bilimleri Dergisi. 2025;11(4):423-34.

Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi olarak 2013'te kurulan dergimiz,
MEMBA Su Bilimleri Dergisi olarak yayın hayatına devam etmektedir.
-----------
MEMBA Su Bilimleri Dergisi, Kastamonu Üniversitesi tarafından yayımlanan, uluslararası, hakemli ve açık erişimli bilimsel bir dergidir. Dergi, sucul bilimler ve su kaynaklarına ilişkin temel ve uygulamalı bilimsel araştırmaların yayımlanmasını teşvik etmeyi, disiplinler arası bilimsel iletişimi güçlendirmeyi ve bu alandaki bilgi birikimini artırmayı amaçlamaktadır. Dergi yılda dört sayı olarak( Mart, Haziran, Eylül, Aralık aylarında) Türkçe ve İngilizce orjinal makaleler, kısa notlar, teknik notlar, raporlar ve derlemelere yer verir.

MEMBA Su Bilimleri Dergisi
TRDizin, SOBIAD, ASCI, CAB Direct, Google Scholar, Paperity, Asosindex, Academic Journal Index, CNKI Scholar
dizinlerinde taranmaktadır.
----------
Dergimize makale yükleme sırasında intihal benzerlik raporu yüklemek zorunlu ve bu raporun intihal benzerlik oranının % 30'un altında olması gerekmektedir. Bu raporu yazarlar makale yükleme sırasında göndermelidir.
Dergimize yüklenen Türkçe ve İngilizce makalelerde Türkçe ve İngilizce özetlerin bulunması zorunludur.