Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Limanlarda Demirleyen Gırgır Teknelerinde Biyolojik Kirlenmenin Mekânsal ve Taksonomik Değişkenliği

Yıl 2025, Cilt: 11 Sayı: 4, 481 - 490, 31.12.2025
https://doi.org/10.58626/memba.1797303

Öz

Balıkçı gemilerindeki biyolojik kirlenme, yakıt tüketimini, gemi bakım maliyetlerini ve istilacı türlerin yayılma riskini arttırarak ekolojik ve ekonomik sorunlara yol açmaktadır. Bu çalışmada, Karadeniz'de kuru havuzda bekleyen dört gırgır teknesindeki kirlenme desenleri incelenmiş, kirlenmeye sebep olan organizmalarının yoğunluğu, kopmpozisyonu ve alansal dağılımı değerlendirilmiştir. Geminin altı ayrı noktasından alınan foto-kuadrat örnekleri ve doğrudan sayımlar sonucunda, gemiler arasında değişen baskınlıklara sahip olmak üzere, üç takson tespit edilmiştir: Bivalvia, Bryozoa ve Cirripedia. A ve C gemileri Bivalvia'nın baskın ve geniş bir kaplama alanına sahip olduğu gemilerdi (sırasıyla 4,60 m² ve 3,32 m²). Gemi B yüksek Bryozoa baskınlığına (orta bölümde 4,62 m²) sahip iken; Gemi D, 0,73 m² kaplama alanına ve gövde tabanında yüksek yoğunluğa (2974 ± 1596,5 ind./m²) ulaşan Cirripedia baskınlığına sahiptir. Kirlenme yoğunluğu, yumrubaş ve pruva bölümlerinde en yüksek seviyedeydi ve Ship B gemisinin ortasında yoğunlaşan Bryozoa kolonileri hariç, geminin kıç tarafına doğru azalıyordu. Pervanelerde Cirripedia baskındır ve Gemi B'de maksimum birey sayısına (173 ± 96,2 ind.) ulaşmıştır. Bivalvia ve Cirripedia, tuzluluk seviyesinin normal olduğu (20‰) limanlarda demirlemiş gemilerde baskınken, tatlı su girişi nedeniyle tuzluluk seviyesinin daha düşük olduğu (14‰) limanda Bryozoa baskındır. Benzerlik Analizi, Gemi A ve C'nin türlerinin uzamsal dağılımı açısından yaklaşık %80 benzerlik gösterdiğini, Gemi D'nin ise diğer gemilerden farklı olduğunu ortaya koymuştur. Sonuçlar, limana özgü tuzluluk ve hidrodinamik koşulların, gemi tipi ve antifouling kaplamanın baskın olduğu kirlenme dizisini belirleyen temel faktörler olduğunu göstermektedir. Bu bulgular, bölgeye özgü antifouling stratejilerini, yüksek riskli gövde bölümlerinin hedefli temizliğini ve sürtünmeyi, maliyetleri ve ekolojik riskleri azaltmak için liman koşullarının izlenmesini desteklemektedir.

Teşekkür

Yazarlar, gemi gövdelerinden numune toplanmasına izin verdikleri için gemi sahiplerine ve tesislerinde gemiler üzerinde yapılan incelemeler sırasında erişim ve yardım sağlayan tersane sahiplerine ve personeline teşekkürlerini sunarlar.

Kaynakça

  • Anderson, C.D., Hunter, J.E., 2000. Whither antifoulings after TBT, in: NAV 2000 Conference Proceedings.
  • Arndt, E., Robinson, A., Hester, S., Woodham, B., Wilkinson, P., Gorgula, S., 2021. Factors that influence vessel biofouling and its prevention and management, Final report for CEBRA Project.
  • Bannister, J., Sievers, M., Bush, F., Bloecher, N., 2019. Biofouling in marine aquaculture: a review of recent research and developments. Biofouling 35, 631–648. https://doi.org/10.1080/08927014.2019.1640214
  • Basu, S., Hanh, B.M., Isaiah Chua, J.Q., Daniel, D., Ismail, M.H., Marchioro, M., Amini, S., Rice, S.A., Miserez, A., 2020. Green biolubricant infused slippery surfaces to combat marine biofouling. J. Colloid Interface Sci. 568, 185–197. https://doi.org/10.1016/J.JCIS.2020.02.049
  • Berntsson, K.M., Jonsson, P.R., 2003. Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: a comparison of static panels and boat hulls during the boating season. Biofueling 19, 187–195.
  • Brancato, M.S., Woollacott, R.M., 1982. Effect of microbial films on settlement of bryozoan larvae (Bugula simplex, B. stolonifera and B. turrita). Mar. Biol. 71, 51–56. https://doi.org/10.1007/BF00396992/METRICS
  • Coutts, A.D.M., Dodgshun, T.J., 2007. The nature and extent of organisms in vessel sea-chests: A protected mechanism for marine bioinvasions. Mar. Pollut. Bull. 54, 875–886. https://doi.org/10.1016/J.MARPOLBUL.2007.03.011
  • Davidson, I., Cahill, P., Hinz, A., Kluza, D., Scianni, C., Georgiades, E., 2021. A Review of Biofouling of Ships’ Internal Seawater Systems. Front. Mar. Sci. 8, 761531. https://doi.org/10.3389/FMARS.2021.761531/BIBTEX
  • Davidson, I.C., Smith, G., Ashton, G. V., Ruiz, G.M., Scianni, C., 2020. An experimental test of stationary lay-up periods and simulated transit on biofouling accumulation and transfer on ships. Biofouling 36, 455–466. https://doi.org/10.1080/08927014.2020.1769612
  • Espinel-Velasco, N., Tobias-Hünefeldt, S.P., Karelitz, S., Hoffmann, L.J., Morales, S.E., Lamare, M.D., 2021. Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement. Mar. Environ. Res. 105291. https://doi.org/10.1016/j.marenvres.2021.105291
  • FAO, 2000. The State of World Fisheries and Aquaculture, 2000. Food & Agriculture Org.
  • Hellio, C., Yebra, D., 2009. Advances in Marine Antifouling Coatings and Technologies, Advances in Marine Antifouling Coatings and Technologies. Woodhead Publishing Limited, Cambridge. https://doi.org/10.1533/9781845696313
  • Hsieh, P.C., Chien, H.W., 2023. Biomimetic surfaces: Insights on the role of surface topography and wetting properties in bacterial attachment and biofilm formation. Colloids Surfaces B Biointerfaces 228, 113389. https://doi.org/10.1016/J.COLSURFB.2023.113389
  • Jewett, E.B., Lawson, K.N., Larson, K.J., Tracy, B.M., Altman, S., Chang, A.L., Cowan, S., Crooks, J.A., Huber, T., Wells, E.H., Ruiz, G.M., 2022. Differences in fouling community composition and space occupation across broad spatial and temporal scales. Front. Mar. Sci. 9, 933405. https://doi.org/10.3389/FMARS.2022.933405/BIBTEX
  • Lee, H.G., Yu, O.H., Kim, S.L., Kang, J.H., Shin, K.S., 2024. Species Composition and Distribution of Hull-Fouling Macroinvertebrates Differ According to the Areas of Research Vessel Operation. J. Mar. Sci. Eng. 12, 613. https://doi.org/10.3390/JMSE12040613/S1
  • Lehaitre, M., Delauney, L., Compère, C., 2008. Biofouling and underwater measurements. Real-time Obs. Syst. Ecosyst. Dyn. harmful algal Bloom. Theory, Instrum. Model. Oceanogr. Methodol. Ser. UNESCO, Paris 463–493.
  • Maduka, M., Schoefs, F., Thiagarajan, K., Bates, A., 2023. Hydrodynamic effects of biofouling-induced surface roughness – Review and research gaps for shallow water offshore wind energy structures. Ocean Eng. 272, 113798. https://doi.org/10.1016/J.OCEANENG.2023.113798
  • Martín-Rodríguez, A.J., Babarro, J.M.F., Lahoz, F., Sansón, M., Martín, V.S., Norte, M., Fernández, J.J., 2015. From Broad-Spectrum Biocides to Quorum Sensing Disruptors and Mussel Repellents: Antifouling Profile of Alkyl Triphenylphosphonium Salts. PLoS One 10, e0123652. https://doi.org/10.1371/journal.pone.0123652
  • Moshchenko Alexander, V., Yu, Z.A., 2001. Distributional characteristics of macrofouling organisms on ocean-going ships of the Far East Sea Basin. Ocean Polar Res. 23, 323–335.
  • Outinen, O., Puntila-Dodd, R., Barda, I., Brzana, R., Hegele-Drywa, J., Kalnina, M., Kostanda, M., Lindqvist, A., Normant-Saremba, M., Ścibik, M., Strake, S., Vuolamo, J., Lehtiniemi, M., 2021. The role of marinas in the establishment and spread of non-indigenous species in Baltic Sea fouling communities. Biofouling 37, 984–997. https://doi.org/10.1080/08927014.2021.1996564
  • Özyurt, R., Cihan, M., 2025. Assessment of Biofouling and Antifouling Performance on Glass Fiber Reinforced Polymer (GFRP) Hulls. J. ETA Marit. Sci. 13, 173–184. https://doi.org/10.4274/JEMS.2025.83792
  • Ozyurt, R., Uzun, D., Terzi, Y., Şaffak, S., Atlar, M., Turan, O., 2023. A simple antifouling coating selection exhibits notable benefits for industrial fishing vessels. Ocean Eng. 288, 115955. https://doi.org/10.1016/J.OCEANENG.2023.115955
  • Pati, S.K., Rao, M., Balaji, M., Nagar, V., 2015. Spatial and temporal changes in biofouling community structure at Visakhapatnam harbour, east coast of India.
  • Prendergast, G.S., 2010. Settlement and behaviour of marine fouling organisms. Biofouling 30–59. Qiu, J.-W., Qian, P.-Y., 1998. Combined effects of salinity and temperature on juvenile survival, growth and maturation in the polychaete Hydroides elegans.
  • Radu, A.I., Vrouwenvelder, J.S., van Loosdrecht, M.C.M., Picioreanu, C., 2012. Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels. Chem. Eng. J. 188, 30–39. https://doi.org/10.1016/j.cej.2012.01.133
  • Roberts, D., Rittschof, D., Holm, E., Schmidt, A.R., 1991. Factors influencing initial larval settlement: temporal, spatial and surface molecular components. J. Exp. Mar. Bio. Ecol. 150, 203–221. https://doi.org/10.1016/0022-0981(91)90068-8
  • Satheesh, S., Kumar, A.A.J., Broom, M., Yáñez, E.P., El-Sherbiny, M.M., 2025. Depth-wise variations in biofouling community development on aquaculture cage nets in the Red Sea. Egypt. J. Aquat. Res. https://doi.org/10.1016/J.EJAR.2025.09.002
  • Schultz, M.P., Bendick, J.A., Holm, E.R., Hertel, W.M., 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27, 87–98. https://doi.org/10.1080/08927014.2010.542809
  • TEPGE, 2024. TARIM REFORMU GENEL MÜDÜRLÜĞÜ TARIMSAL EKONOMİ VE POLİTİKA GELİŞTİRME ENSTİTÜSÜ TRGM/TEPGE SU ÜRÜNLERİ ÜRÜN RAPORU 2024 Hazırlayan. Ankara.
  • TOB, 2025. Fisheries Coastal Structures and Inventories. In turkish “Balıkçılık Kıyı Yapıları ve Envanterleri.” Ulaski, B.P., Konar, B., 2024. Seasonal and site-specific differences in biofouling communities on Pacific oyster Mariculture farms. J. Exp. Mar. Bio. Ecol. 578, 152031. https://doi.org/10.1016/J.JEMBE.2024.152031
  • Uzun, D., Ozyurt, R., Demirel, Y.K., Turan, O., 2020. Does the barnacle settlement pattern affect ship resistance and powering? Appl. Ocean Res. 95, 102020. https://doi.org/10.1016/j.apor.2019.102020
  • Vaughan, D., Skerritt, D.J., Duckworth, J., Sumaila, U.R., Duffy, M., 2023. Revisiting fuel tax concessions (FTCs): The economic implications of fuel subsidies for the commercial fishing fleet of the United Kingdom. Mar. Policy 155, 105763–105763. https://doi.org/10.1016/J.MARPOL.2023.105763
  • Videla, H.A., Characklis, W.G., 1992. Biofouling and microbially influenced corrosion. Int. Biodeterior. Biodegradation 29, 195–212. https://doi.org/10.1016/0964-8305(92)90044-O
  • Vinagre, P.A., Simas, T., Cruz, E., Pinori, E., Svenson, J., 2020. Marine Biofouling: A European Database for the Marine Renewable Energy Sector. J. Mar. Sci. Eng. 2020, Vol. 8, Page 495 8, 495. https://doi.org/10.3390/JMSE8070495
  • Wieczorek, S.K., Todd, C.D., 1997. Inhibition and facilitation of bryozoan and ascidian settlement by natural multi-species biofilms: Effects of film age and the roles of active and passive larval attachment. Mar. Biol. 128, 463–473. https://doi.org/10.1007/S002270050113/METRICS
  • Yan, M., Shao, D., 2025. Application of different lights in solving the marine biofouling problem of uranium extraction from seawater. J. Photochem. Photobiol. B Biol. 264, 113114. https://doi.org/10.1016/J.JPHOTOBIOL.2025.113114

Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports

Yıl 2025, Cilt: 11 Sayı: 4, 481 - 490, 31.12.2025
https://doi.org/10.58626/memba.1797303

Öz

Biofouling on fishing vessels poses ecological and economic challenges by increasing fuel consumption, maintenance costs, and the risk of spreading alien species. This study examined fouling patterns on four purse seiners dry-docked in the Black Sea, assessing the density, composition, and spatial distribution of fouler organisms. Photo-quadrat samples and direct counts from six different locations of the ship revealed three taxa: Bivalvia, Bryozoa, and Cirripedia, by varying dominancy among the vessels. Ships A and C were Bivalvia-dominated, with extensive coverage area (4.60 m² and 3.32 m², respectively). Ship B had high Bryozoa dominancy (4.62 m² in the midsection), while Ship D had only Cirripedia prevalence, reaching 0.73 m² coverage area and very high density at the hull bottom (2974 ± 1596.5 ind./m²). Fouling density was highest in the Bulbous Bow and Front sections, decreasing toward the stern, except for Bryozoa colonies concentrated midship on Ship B. Propellers were dominated by Cirripedia, reaching maximum counts on Ship B (173 ± 96.2 ind.). While Bivalvia and Cirripedia were dominant in ships moored in ports where salinity is at normal levels (20‰), Bryozoa was dominant in port with lower salinity (14‰) due to freshwater input. Similarity Analysis showed that Ship A and C were nearly 80% similar in terms of spatial coverage of fouler species, while Ship D was different from the others. The findings of the study suggest that port-specific salinity and hydrodynamic conditions play a pivotal role in the sequence of fouling events, superseding the influence of vessel type and antifouling coating.

Teşekkür

The authors express their gratitude to the vessel owners for granting permission to collect samples from ship hulls, and to the shipyard owners and personnel for providing access and assistance during the investigations conducted on vessels within their facilities.

Kaynakça

  • Anderson, C.D., Hunter, J.E., 2000. Whither antifoulings after TBT, in: NAV 2000 Conference Proceedings.
  • Arndt, E., Robinson, A., Hester, S., Woodham, B., Wilkinson, P., Gorgula, S., 2021. Factors that influence vessel biofouling and its prevention and management, Final report for CEBRA Project.
  • Bannister, J., Sievers, M., Bush, F., Bloecher, N., 2019. Biofouling in marine aquaculture: a review of recent research and developments. Biofouling 35, 631–648. https://doi.org/10.1080/08927014.2019.1640214
  • Basu, S., Hanh, B.M., Isaiah Chua, J.Q., Daniel, D., Ismail, M.H., Marchioro, M., Amini, S., Rice, S.A., Miserez, A., 2020. Green biolubricant infused slippery surfaces to combat marine biofouling. J. Colloid Interface Sci. 568, 185–197. https://doi.org/10.1016/J.JCIS.2020.02.049
  • Berntsson, K.M., Jonsson, P.R., 2003. Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: a comparison of static panels and boat hulls during the boating season. Biofueling 19, 187–195.
  • Brancato, M.S., Woollacott, R.M., 1982. Effect of microbial films on settlement of bryozoan larvae (Bugula simplex, B. stolonifera and B. turrita). Mar. Biol. 71, 51–56. https://doi.org/10.1007/BF00396992/METRICS
  • Coutts, A.D.M., Dodgshun, T.J., 2007. The nature and extent of organisms in vessel sea-chests: A protected mechanism for marine bioinvasions. Mar. Pollut. Bull. 54, 875–886. https://doi.org/10.1016/J.MARPOLBUL.2007.03.011
  • Davidson, I., Cahill, P., Hinz, A., Kluza, D., Scianni, C., Georgiades, E., 2021. A Review of Biofouling of Ships’ Internal Seawater Systems. Front. Mar. Sci. 8, 761531. https://doi.org/10.3389/FMARS.2021.761531/BIBTEX
  • Davidson, I.C., Smith, G., Ashton, G. V., Ruiz, G.M., Scianni, C., 2020. An experimental test of stationary lay-up periods and simulated transit on biofouling accumulation and transfer on ships. Biofouling 36, 455–466. https://doi.org/10.1080/08927014.2020.1769612
  • Espinel-Velasco, N., Tobias-Hünefeldt, S.P., Karelitz, S., Hoffmann, L.J., Morales, S.E., Lamare, M.D., 2021. Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement. Mar. Environ. Res. 105291. https://doi.org/10.1016/j.marenvres.2021.105291
  • FAO, 2000. The State of World Fisheries and Aquaculture, 2000. Food & Agriculture Org.
  • Hellio, C., Yebra, D., 2009. Advances in Marine Antifouling Coatings and Technologies, Advances in Marine Antifouling Coatings and Technologies. Woodhead Publishing Limited, Cambridge. https://doi.org/10.1533/9781845696313
  • Hsieh, P.C., Chien, H.W., 2023. Biomimetic surfaces: Insights on the role of surface topography and wetting properties in bacterial attachment and biofilm formation. Colloids Surfaces B Biointerfaces 228, 113389. https://doi.org/10.1016/J.COLSURFB.2023.113389
  • Jewett, E.B., Lawson, K.N., Larson, K.J., Tracy, B.M., Altman, S., Chang, A.L., Cowan, S., Crooks, J.A., Huber, T., Wells, E.H., Ruiz, G.M., 2022. Differences in fouling community composition and space occupation across broad spatial and temporal scales. Front. Mar. Sci. 9, 933405. https://doi.org/10.3389/FMARS.2022.933405/BIBTEX
  • Lee, H.G., Yu, O.H., Kim, S.L., Kang, J.H., Shin, K.S., 2024. Species Composition and Distribution of Hull-Fouling Macroinvertebrates Differ According to the Areas of Research Vessel Operation. J. Mar. Sci. Eng. 12, 613. https://doi.org/10.3390/JMSE12040613/S1
  • Lehaitre, M., Delauney, L., Compère, C., 2008. Biofouling and underwater measurements. Real-time Obs. Syst. Ecosyst. Dyn. harmful algal Bloom. Theory, Instrum. Model. Oceanogr. Methodol. Ser. UNESCO, Paris 463–493.
  • Maduka, M., Schoefs, F., Thiagarajan, K., Bates, A., 2023. Hydrodynamic effects of biofouling-induced surface roughness – Review and research gaps for shallow water offshore wind energy structures. Ocean Eng. 272, 113798. https://doi.org/10.1016/J.OCEANENG.2023.113798
  • Martín-Rodríguez, A.J., Babarro, J.M.F., Lahoz, F., Sansón, M., Martín, V.S., Norte, M., Fernández, J.J., 2015. From Broad-Spectrum Biocides to Quorum Sensing Disruptors and Mussel Repellents: Antifouling Profile of Alkyl Triphenylphosphonium Salts. PLoS One 10, e0123652. https://doi.org/10.1371/journal.pone.0123652
  • Moshchenko Alexander, V., Yu, Z.A., 2001. Distributional characteristics of macrofouling organisms on ocean-going ships of the Far East Sea Basin. Ocean Polar Res. 23, 323–335.
  • Outinen, O., Puntila-Dodd, R., Barda, I., Brzana, R., Hegele-Drywa, J., Kalnina, M., Kostanda, M., Lindqvist, A., Normant-Saremba, M., Ścibik, M., Strake, S., Vuolamo, J., Lehtiniemi, M., 2021. The role of marinas in the establishment and spread of non-indigenous species in Baltic Sea fouling communities. Biofouling 37, 984–997. https://doi.org/10.1080/08927014.2021.1996564
  • Özyurt, R., Cihan, M., 2025. Assessment of Biofouling and Antifouling Performance on Glass Fiber Reinforced Polymer (GFRP) Hulls. J. ETA Marit. Sci. 13, 173–184. https://doi.org/10.4274/JEMS.2025.83792
  • Ozyurt, R., Uzun, D., Terzi, Y., Şaffak, S., Atlar, M., Turan, O., 2023. A simple antifouling coating selection exhibits notable benefits for industrial fishing vessels. Ocean Eng. 288, 115955. https://doi.org/10.1016/J.OCEANENG.2023.115955
  • Pati, S.K., Rao, M., Balaji, M., Nagar, V., 2015. Spatial and temporal changes in biofouling community structure at Visakhapatnam harbour, east coast of India.
  • Prendergast, G.S., 2010. Settlement and behaviour of marine fouling organisms. Biofouling 30–59. Qiu, J.-W., Qian, P.-Y., 1998. Combined effects of salinity and temperature on juvenile survival, growth and maturation in the polychaete Hydroides elegans.
  • Radu, A.I., Vrouwenvelder, J.S., van Loosdrecht, M.C.M., Picioreanu, C., 2012. Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels. Chem. Eng. J. 188, 30–39. https://doi.org/10.1016/j.cej.2012.01.133
  • Roberts, D., Rittschof, D., Holm, E., Schmidt, A.R., 1991. Factors influencing initial larval settlement: temporal, spatial and surface molecular components. J. Exp. Mar. Bio. Ecol. 150, 203–221. https://doi.org/10.1016/0022-0981(91)90068-8
  • Satheesh, S., Kumar, A.A.J., Broom, M., Yáñez, E.P., El-Sherbiny, M.M., 2025. Depth-wise variations in biofouling community development on aquaculture cage nets in the Red Sea. Egypt. J. Aquat. Res. https://doi.org/10.1016/J.EJAR.2025.09.002
  • Schultz, M.P., Bendick, J.A., Holm, E.R., Hertel, W.M., 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27, 87–98. https://doi.org/10.1080/08927014.2010.542809
  • TEPGE, 2024. TARIM REFORMU GENEL MÜDÜRLÜĞÜ TARIMSAL EKONOMİ VE POLİTİKA GELİŞTİRME ENSTİTÜSÜ TRGM/TEPGE SU ÜRÜNLERİ ÜRÜN RAPORU 2024 Hazırlayan. Ankara.
  • TOB, 2025. Fisheries Coastal Structures and Inventories. In turkish “Balıkçılık Kıyı Yapıları ve Envanterleri.” Ulaski, B.P., Konar, B., 2024. Seasonal and site-specific differences in biofouling communities on Pacific oyster Mariculture farms. J. Exp. Mar. Bio. Ecol. 578, 152031. https://doi.org/10.1016/J.JEMBE.2024.152031
  • Uzun, D., Ozyurt, R., Demirel, Y.K., Turan, O., 2020. Does the barnacle settlement pattern affect ship resistance and powering? Appl. Ocean Res. 95, 102020. https://doi.org/10.1016/j.apor.2019.102020
  • Vaughan, D., Skerritt, D.J., Duckworth, J., Sumaila, U.R., Duffy, M., 2023. Revisiting fuel tax concessions (FTCs): The economic implications of fuel subsidies for the commercial fishing fleet of the United Kingdom. Mar. Policy 155, 105763–105763. https://doi.org/10.1016/J.MARPOL.2023.105763
  • Videla, H.A., Characklis, W.G., 1992. Biofouling and microbially influenced corrosion. Int. Biodeterior. Biodegradation 29, 195–212. https://doi.org/10.1016/0964-8305(92)90044-O
  • Vinagre, P.A., Simas, T., Cruz, E., Pinori, E., Svenson, J., 2020. Marine Biofouling: A European Database for the Marine Renewable Energy Sector. J. Mar. Sci. Eng. 2020, Vol. 8, Page 495 8, 495. https://doi.org/10.3390/JMSE8070495
  • Wieczorek, S.K., Todd, C.D., 1997. Inhibition and facilitation of bryozoan and ascidian settlement by natural multi-species biofilms: Effects of film age and the roles of active and passive larval attachment. Mar. Biol. 128, 463–473. https://doi.org/10.1007/S002270050113/METRICS
  • Yan, M., Shao, D., 2025. Application of different lights in solving the marine biofouling problem of uranium extraction from seawater. J. Photochem. Photobiol. B Biol. 264, 113114. https://doi.org/10.1016/J.JPHOTOBIOL.2025.113114
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kirlilik ve Kontaminasyon (Diğer), Balıkçılık Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Murat Özaydınlı 0000-0001-8965-0306

Refik Özyurt 0000-0002-9596-6291

Gönderilme Tarihi 5 Ekim 2025
Kabul Tarihi 24 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 4

Kaynak Göster

APA Özaydınlı, M., & Özyurt, R. (2025). Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports. MEMBA Su Bilimleri Dergisi, 11(4), 481-490. https://doi.org/10.58626/memba.1797303
AMA Özaydınlı M, Özyurt R. Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports. MEMBA Su Bilimleri Dergisi. Aralık 2025;11(4):481-490. doi:10.58626/memba.1797303
Chicago Özaydınlı, Murat, ve Refik Özyurt. “Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports”. MEMBA Su Bilimleri Dergisi 11, sy. 4 (Aralık 2025): 481-90. https://doi.org/10.58626/memba.1797303.
EndNote Özaydınlı M, Özyurt R (01 Aralık 2025) Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports. MEMBA Su Bilimleri Dergisi 11 4 481–490.
IEEE M. Özaydınlı ve R. Özyurt, “Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports”, MEMBA Su Bilimleri Dergisi, c. 11, sy. 4, ss. 481–490, 2025, doi: 10.58626/memba.1797303.
ISNAD Özaydınlı, Murat - Özyurt, Refik. “Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports”. MEMBA Su Bilimleri Dergisi 11/4 (Aralık2025), 481-490. https://doi.org/10.58626/memba.1797303.
JAMA Özaydınlı M, Özyurt R. Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports. MEMBA Su Bilimleri Dergisi. 2025;11:481–490.
MLA Özaydınlı, Murat ve Refik Özyurt. “Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports”. MEMBA Su Bilimleri Dergisi, c. 11, sy. 4, 2025, ss. 481-90, doi:10.58626/memba.1797303.
Vancouver Özaydınlı M, Özyurt R. Spatial and Taxonomic Variability of Biofouling on Purse Seiners Moored in Different Ports. MEMBA Su Bilimleri Dergisi. 2025;11(4):481-90.

Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi olarak 2013'te kurulan dergimiz,
MEMBA Su Bilimleri Dergisi olarak yayın hayatına devam etmektedir.
-----------
MEMBA Su Bilimleri Dergisi, Kastamonu Üniversitesi tarafından yayımlanan, uluslararası, hakemli ve açık erişimli bilimsel bir dergidir. Dergi, sucul bilimler ve su kaynaklarına ilişkin temel ve uygulamalı bilimsel araştırmaların yayımlanmasını teşvik etmeyi, disiplinler arası bilimsel iletişimi güçlendirmeyi ve bu alandaki bilgi birikimini artırmayı amaçlamaktadır. Dergi yılda dört sayı olarak( Mart, Haziran, Eylül, Aralık aylarında) Türkçe ve İngilizce orjinal makaleler, kısa notlar, teknik notlar, raporlar ve derlemelere yer verir.

MEMBA Su Bilimleri Dergisi
TRDizin, SOBIAD, ASCI, CAB Direct, Google Scholar, Paperity, Asosindex, Academic Journal Index, CNKI Scholar
dizinlerinde taranmaktadır.
----------
Dergimize makale yükleme sırasında intihal benzerlik raporu yüklemek zorunlu ve bu raporun intihal benzerlik oranının % 30'un altında olması gerekmektedir. Bu raporu yazarlar makale yükleme sırasında göndermelidir.
Dergimize yüklenen Türkçe ve İngilizce makalelerde Türkçe ve İngilizce özetlerin bulunması zorunludur.