Araştırma Makalesi
BibTex RIS Kaynak Göster

İzmir Körfezi Homa Lagünü’nde Sediment ve Sediment Üstü Suda Nutrientler (Ege Denizi, Türkiye)

Yıl 2025, Cilt: 11 Sayı: 1, 10 - 23, 28.03.2025
https://doi.org/10.58626/memba.1667313

Öz

Biyojenik bileşiklerin bentik akışları, sığ su ekosistemlerinin biyojeokimyasında kritik bir rol oynar. Bentik
akışların lagün ölçeğinde ölçülmesi, heterojen sediment yapıları ve sediment su arayüzündeki difüzyon ile advektif
taşıma süreçlerinin birleşimi nedeniyle zordur. Bu çalışmada, İzmir Körfezi Homa Dalyan’ı (Ege Denizi, Türkiye)
sedimentinde aylık nutrient akış denemeleri gerçekleştirilmiştir. Reaktif silikat (RSi) akışı 14.6 ile 255.24
μgatSi/m²/saat arasında, amonyum (NH4+) akışı 3.59 ile 95.8 μgatN/m²/saat arasında, nitrit (NO2-) akışı 0.93 ile 13.99
μgatN/m²/saat arasında, nitrat (NO3-) akışı 27.76 ile 300 μgatN/m²/saat arasında, reaktif fosfat (RP) akışı 0.74 ile 5.80
μgatP/m²/saat arasında değişim göstermiştir. Araştırma, RSi akışının yaz aylarında maksimum seviyeye ulaştığını,
NO3- akışının kış ve yaz dönemlerinde hem sedimentten suya hem de sudan sedimente gerçekleştiğini ortaya
koymuştur. NO2- akışının yaz dışında önemli ölçüde sedimente geçtiği belirlenmiştir. RP, yaz aylarında sedimentten
suya geçerken, kış ortası ve sonbaharda sedimente bağlanmıştır. NH4+, kış aylarında hem sedimentten suya hem de
sudan sedimente akış yaparken yaz aylarında sudan sedimente akış göstermektedir. Sonuç olarak NO3-, NH4+ ve
RP'nin sedimentten su kolonuna doğru akışı, bu bileşenlerin sediment kökenli olduğunu göstermektedir.

Kaynakça

  • Aller, R. C. (1982). The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, P.L., Tevesz, M.J.S. (Eds.), Animal-Sediment Relations. Plenum. New York, pp. 53–102.
  • Aller, R. C., & Benninger, L. K. (1981). Spatial and temporal patterns of dissolved ammonium, manganese and silica fluxes from bottom sediments of Long Island Sound, USA. Journal of Marine Research, 39(2): 295–314.
  • Barbanti, A., Bergamini, M. C., Frascari, F., Miserocchi, S., Ratta, M. & Rosso, G. (1995). Diagenetic processes and nutrient fluxes at the sediment-water interface, Northern Adriatic Sea. Italy. Marine and Freshwater Research, 46: 55–67 https://doi.org/10.1071/MF9950055
  • Belias, C., Dassenakis, M. & Scoullos, M. (2007). Study of the N, P and Si fluxes between fish farm sediment and seawater. Results of simulation experiments employing a benthic chamber under various redox conditions. Marine Chemistry, 103 (3-4): 266-275 https://doi.org/10.1016/j.marchem.2006.09.005
  • Benson, B. B. & Krause Jr, D. (1984). The concentration and isotopic fractionation of oxygen dissolved in fresh water and sea water in equilibrium with the atmosphere. Limnology and Oceanography, 29 (3): 620–632 https://doi.org/10.4319/lo.1984.29.3.0620
  • Berelson, W. M., Heggie, D., Longmore, A., Kilgore, T., Nicholson, G. & Skyring, G. (1998). Benthic Nutrient Recycling in Port Phillip Bay, Australia. Estuarine, Coastal and Shelf Science, 46: 917-934 https://doi.org/10.1006/ecss.1998.0328
  • Blomqvist, S., Gunnars, A. & Elmgren, R. (2004). Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: A matter of salt. Limnology and Oceanography, 49 (6): 2236–2241 https://doi.org/10.4319/lo.2004.49.6.2236
  • Bonometto, A., Feola, A., Rampazzo, F., Gion, C., Berto, D., Ponis, E. & Boscolo Brusà, R. (2019). Factors controlling sediment and nutrient fluxes in a small microtidal salt marsh within the Venice Lagoon. Science of the Total Environment, 650: 1832–1845. https://doi.org/10.1016/j.scitotenv.2018.09.142
  • Carniello, L. A. Defina, Fagherazzi, S. & D’Alpaos, L. (2005). A combined Wind Wave-Tidal Model for the Venice lagoon, Italy. Journal of Geophysical Research., 110, F04007. doi:10.1029/2008JF001157
  • Charbonnier, C., Anschutz, P., Tamborski, J. & van Beek, P. (2023). Benthic fluxes and mineralization processes at the scale of a coastal lagoon: Permeable versus fine-grained sediment contribution. Marine Chemistry, 254: 1-14. https://doi.org/10.1016/j.marchem.2023.104274
  • Chelsky, A., Pitt, K. A., Ferguson, A. J. P., Bennett, W. W., Teasdale, P. R. & Welsh, D. T. (2016). Decomposition of jellyfish carrion in situ: short-term impacts on infauna, benthic nutrient fluxes and sediment redox conditions. Science of The Total Environment, 566 (567): 929–937. https://doi.org/10.1016/j.scitotenv.2016.05.011
  • Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. & Wulff, F. (2002). Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environmental Science & Technology, 36: 5315–5320. https://doi.org/10.1021/es025763w.
  • Denis, L. & Grenz, C. (2003). Spatial variability in oxygen and nutrient fluxes at the sediment-water interface on the continental shelf in the Gulf of lions (NW Mediterranean). Acta Oceanologica, 26, 373–389. https://doi.org/10.1016/S0399-1784(03)00017-3
  • Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321: 926–929. https://doi.org/10.1126/science.1156401
  • Duce, R. A., LaRoche, J., Altier, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M., Ulloa, O., Voss, M., Ward B. & Zamora, L. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320: 893–897. https://doi.org/ 10.1126/science.1150369
  • Ermert, A. (2003). Turkey goes to court to protect Gediz Delta. http:/ /www. panda. org/ about_ wwf/ what_we _do/freshwater /news /news. cfm? uNews ID=5322 9.Jan.2003
  • Essoni, N. (1998). Etude de la dynamique des sels nutritifs et des métaux lourds en Relation avec la sédimentologie et l’hydrodynamique dans le large du golfe de Tunis. Ph.D. Thesis. Université De Tunis II, Tunus.
  • Fagherazzi, S., Palermo, C., Rulli, M. C., Carniello, L. & Defina, A. (2007). Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats. Journal of Geophysical Research, 112: 1-12. doi:10.1029/2006JF000572
  • Fagherazzi, S., Wiberg, P. L., Temmerman, S., Struyf, E., Zhao, Y. & Raymond, P. A. (2013). Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecological Processes, 2(3): 1-16. doi:10.1186/2192-1709-2-3.
  • Fox, A. L, & Trefry, J. H. (2018). Environmental dredging to remove fine-grained, organic-rich sediments and reduce inputs of nitrogen and phosphorus to a subtropical estuary. Marine Technology Society Journal, 52: 42–57. doi: 10.4031/mtsj.52.4.3.
  • Fox, A. L. & Trefry, J. H. (2023). Nutrient fluxes from recent deposits of fine-grained, organic-rich sediments in Florida estuary. Frontiers in Marine Science, 10: 1-21. https://doi.org/10.3389/fmars.2023.1305990
  • Ganju, N. K., Schoellhamer, D. H. & Bergamaschi, B. A. (2005). Suspended sediment fluxes in a tidal wetland: measurement, controlling factors, anderror analysis. Estuaries, 28: 812–822. doi:10.1007/BF02696011
  • Ganju, N. K., Nidzieko, N. J. & Kirwan M. L. (2013). Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model. Journal of Geophysical Research: Earth Surface, 118: 2045–2058. https://doi.org/10.1002/jgrf.20143
  • Grenz, C., Denis, L., Pringault, O. & Fichez, R. (2010). Spatial and seasonal variability of sediment oxygen consumption and nutrient fluxes at the sediment water interface in a sub-tropical lagoon (New Caledonia). Marine Pollution Bulletin, 61: 399–412. https://doi.org/10.1016/j.marpolbul.2010.06.014
  • Harris, L. A., Hodgkins, C. L. S., Day, M. C., Austin, D., Testa, J. M., Boynton, W., Van Der Tak, L. & Chen, N. W. (2015). Optimizing recovery of eutrophic estuaries: Impact of destratification and re-aeration on nutrient and dissolved oxygen dynamics. Ecological Engineering, 75: 470–483. doi: 10.1016/j.ecoleng.2014.028
  • Hyacinthe, C., Anschutz, P., Carbonel, P., Jauanneau, J. M. & Jorrisen, F. J. (2001). Early diagenetic processes in the muddy sediments of the bay of Biscay. Marine Geology, 177:111-128. https://doi.org/10.1016/S0025-3227(01)00127-X
  • Ingall, E. & Jahnke, R. (1997). Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology. 139 (1–4): 219–229. https://doi.org/10.1016/S0025-3227(96)00112-0.
  • Jin, H. Y., Chen, J. F., Weng, H. X., Li, H. L., Zhang, W. Y., Xu, J., Bai, Y. C. & Wang, K. (2009). Variations of paleoproductivity in the past decades and the environmental implications in the Changjiang Estuary in China. Acta Oceanologica Sinica, 31 (2): 113–119 (in Chinese with English abstract). DOI10.1007/s13131-010-0035-x
  • Jäntti, H. & Hietanen, S. (2012). The effects of hypoxia on sediment nitrogen cycling in the Baltic Sea. Ambio, 41 (2): 161–169. https://doi.org/10.1007/s13280-011-0233-6.
  • Jørgensen, K. S. (1989). Annual pattern of denitrification and nitrate ammonification in estuarine sediment. Applied and Environmental Microbiology, 55:1841–1847. https://doi.org/10.1128/aem.55.7.1841-1847.1989
  • Kendzierska, H., Lukawska-Matuszewska, K., Burska, D. & Janas, U. (2020). Benthic fluxes of oxygen and nutrients under the influence of macrobenthic fauna on the periphery of the intermittently hypoxic zone in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 530–531. https://doi.org/10.1016/j.jembe.2020.151439
  • Kim, S., Choi, A., Yang, E., Lee, S., & Hyun, J. (2016). Low benthic respiration and nutrient flux at the highly productive Amundsen Sea Polynya, Antarctica. Deep Sea Research, Part II 123: 92–101. https://doi.org/10.1016/j.dsr2.2015.10.004
  • Kim, S.H., Lee, J.S., Kim, K.T., Kim, S.L., Yu, O.H., Lim, D & Kim, S.H. (2020). Low benthic mineralization and nutrient flux in the continental shelf sedimenr of the northern East China Sea .Journal of Sea Research, 164, 101934. https://doi.org/10.1016/j.seares.2020.101934
  • Kristensen, E. & Kostka, J.E. (2005). Macrofaunal burrows and irrigation in marine sediment: Microbiological and biogeochemical interactions. In: Kristensen, E., Haese, R.R. & Kostka, J.E. (Eds.), Interaction between Marcro- and Microorganisms in Marine Sediments. American Geophysical Union, Washington, DC, pp. 125–157. https://doi.org/10.1029/CE060p0125
  • Lin, C., Ning, X., Su, J., Lin, Y. & Xu, B. (2005). Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000. Journal of Marine Systems, 55: 223–234. https://doi.org/10.1016/j.jmarsys.2004.08.001
  • Lorenzen, C. J. (1971). Chlorophyll-Degradation products in sediments of Black Sea. WoodsHole Oceanographic Institution Contribution No.2828, p.426–428.
  • Lourey, M.J., Alongi, D.M., Ryan, D.A.J. & Devlin, M.J. (2001). Variability of nutrient regeneration rates and nutrient concentrations in surface sediments of the northern Great Barrier Reef shelf. Continental Shelf Research. 21, 145–155. https://doi.org/10.1016/S0278-4343(00)00084-4
  • Ma, S., Yu, Q., Chen, G., Su, H., Tang, W., Sun, Y., Zhou, Z., Jiang, L., Zhu, J., Chen, L., Zhu, B. & Fan, J. (2022a). Above ground net primary productivity mediates the responses of soil respiration to nutrient additions in two tropical montane rainforests. Agricultural and Forest Meteorology, 327, 109200 https://doi.org/10.1016/j.agrformet.2022.109200
  • Ma, S., Chen, X., Su, H., Xing, A., Chen, G., Zhu, J., Zhu, B. & Fang, J. (2022b).. Phosphorus addition decreases soil fungal richness and alters fungal guilds in two tropical forests. Soil Biology and Biochemistry, 175, 108836 https://doi.org/10.1016/j. soilbio.2022.108836.
  • Martin, D. F. (1972). Marine chemistry, vol. 1 Analytical methods (p. 389). NY: Marcel Dekker Inc.
  • Mna, H. B., Alsubih, M., Oueslati, W., Helali, M. A., Amri, S., Added, A. & Aleya, L. (2022). Diagenetic processes and nutrients diffusive fluxes at the sediment-water interface in the Bizerte Lagoon (North Tunisia). Journal of African Earth Science, 196(3):1-15. https://doi.org/10.1016/j.jafrearsci.2022.104671
  • Minareci, O., Öztürk, M., Egemen, Ö. & Minareci, E. (2009). Detergent and Phosphate Pollution in Gediz River, Turkey. African Journal of Biotechnology, 8: 3568-3575. DOI: 10.5897/AJB09.167
  • Moraes, P. C., Sutti, B. O., Chiozzini, V. G. & Braga, E. S. (2023). Benthic aerobic respiration and nutrient fluxes in Cananéia-Iguape Estuarine-Lagoon complex along a salinity gradient. Ocean and Coastal Research, 71(1): 1-20. https://doi.org/10.1590/2675-2824071.22135pcm
  • Murray, L. G., Mudge, S. M., Newton, A. & Icely, J. D. (2006). The effect of benthic sediments on dissolved nutrient concentrations and fluxes. Biogeochemistry, 81:159–178. DOI 10.1007/s10533-006-9034-6
  • Ozkan, E. Y., Kocatas, A. & Buyukisik, B. (2008). Nutrient dynamics between sediment and overlying water in the inner part of Izmir Bay, Eastern Aegean. Environmental Monitoring and Assessment, 143:313–325. DOI 10.1007/s10661-007-9984-8
  • Parlak, H., Çakır A., Boyacıoğlu, M. & Çakal Arslan, Ö. (2006). Heavy Metal Deposition in Sediments from the Delta of the Gediz River (Western Turkey): A Preliminary Study. E.U. Journal of Fisheries & Aquatic Sciences, 23 (3-4): 445–448.
  • Rigaud, S., Radakovitch, O., Couture, R. M., Bruno Deflandre, B., Cossa, D., Garniere, C. & Garnier, J. M. (2013). Mobility and fluxes of trace elements and nutrients at the sediment–water interface of a lagoon under contrasting water column oxygenation conditions. Applied Geochemistry, 31: 35–51. https://doi.org/10.1016/j.apgeochem.2012.12.003
  • Sıkı, M. (2002). The Birds of Gediz Delta (Izmir Bird Paradise). Ekoloji, 11: 11-16.
  • Sisman Aydın, G. & Simsek, K. (2015). Homa Dalyanı (Izmir) Derinlestirme Çalısmalarının Nutrient Degisimleri Üzerine Etkilerinin Izlenmesi. 18. Ulusal Su Ürünleri Sempozyumu, İzmir.
  • Somay, A. M., & Filiz, S. (2003). Hidrology, hydrogeology and hydrochemistry of wetlands: a case study in Izmir Bird Paradise, Turkey. Environmental Geology, 43: 825–835. DOI 10.1007/s00254-002-0697-6
  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis, Bull. No. 167 (p. 310). Ottawa: Fisheries Research Board of Canada.
  • Timmermann, K., Banta, S.T. & Glud, R.N. (2006). Linking Arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments. Journal of Marine Research. 64, 915–938. DOI: 10.1357/002224006779698378
  • Tosunoglu, Z., Ünal, V., Kaykaç, M. H., Mermer, A. & Onem, R. (2015). Ege Dalyanlarının Güncel Durumu. Ege Üniversitesi Bilimsel Arastırma Projesi. No. SUF/006. Izmir, 332p.
  • Uluturhan, E., Kontas, A. & Can, E. (2011). Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): Assessment of contamination and ecological risks. Marine Pollution Bulletin, 1989-1997. https://doi.org/10.1016/j.marpolbul.2011.06.019
  • Zhang, L., Wang, L., Yin, K., Lü, Y., Yang, Y. & Huang, X. (2013). Spatial and seasonal variations of nutrients in sediment profiles and their sediment-water fluxes in the Pearl River Estuary, Southern China. Journal Earth Science, 25: 197–206 https://doi.org/10.1007/s12583-014-0413-y

Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey)

Yıl 2025, Cilt: 11 Sayı: 1, 10 - 23, 28.03.2025
https://doi.org/10.58626/memba.1667313

Öz

Benthic fluxes of biogenic compounds play a critical role in the biogeochemistry of shallow aquatic
ecosystems. Measuring these fluxes at the lagoon scale is challenging due to heterogeneous sediment structures
and the combination of diffusion and advective transport processes at the sediment-water interface. In this study,
monthly nutrient flux experiments were conducted in the sediment of İzmir Bay Homa Lagoon (Aegean Sea, Turkey).
The flux of reactive silicate (RSi) ranged from 14.6 to 255.24 μgatSi/m²/hour, while the ammonium (NH4+) flux varied
between 3.59 and 95.8 μgatN/m²/hour. The nitrite (NO2-) flux ranged from 0.93 to 13.99 μgatN/m²/hour, and the nitrate
(NO3-) flux varied from 27.76 to 300 μgatN/m²/hour. The flux of reactive phosphorus (RP) ranged from 0.74 to 5.80
μgatP/m²/hour. The research indicated that the RSi flux peaked during the summer months, while the NO3- flux
occurred in both winter and summer, transferring nutrients from sediment to water and vice versa. It was determined
that the NO2- flux significantly transferred to the sediment, except during the summer months. The RP flux flowed
from sediment to water during the summer, while it was bound to the sediment during mid-winter and autumn. The
NH4+ flux showed transitions from sediment to water in winter and from water to sediment in summer. In conclusion,
the fluxes of NO3-, NH4+, and RP indicate that these components are sediment-derived.

Kaynakça

  • Aller, R. C. (1982). The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, P.L., Tevesz, M.J.S. (Eds.), Animal-Sediment Relations. Plenum. New York, pp. 53–102.
  • Aller, R. C., & Benninger, L. K. (1981). Spatial and temporal patterns of dissolved ammonium, manganese and silica fluxes from bottom sediments of Long Island Sound, USA. Journal of Marine Research, 39(2): 295–314.
  • Barbanti, A., Bergamini, M. C., Frascari, F., Miserocchi, S., Ratta, M. & Rosso, G. (1995). Diagenetic processes and nutrient fluxes at the sediment-water interface, Northern Adriatic Sea. Italy. Marine and Freshwater Research, 46: 55–67 https://doi.org/10.1071/MF9950055
  • Belias, C., Dassenakis, M. & Scoullos, M. (2007). Study of the N, P and Si fluxes between fish farm sediment and seawater. Results of simulation experiments employing a benthic chamber under various redox conditions. Marine Chemistry, 103 (3-4): 266-275 https://doi.org/10.1016/j.marchem.2006.09.005
  • Benson, B. B. & Krause Jr, D. (1984). The concentration and isotopic fractionation of oxygen dissolved in fresh water and sea water in equilibrium with the atmosphere. Limnology and Oceanography, 29 (3): 620–632 https://doi.org/10.4319/lo.1984.29.3.0620
  • Berelson, W. M., Heggie, D., Longmore, A., Kilgore, T., Nicholson, G. & Skyring, G. (1998). Benthic Nutrient Recycling in Port Phillip Bay, Australia. Estuarine, Coastal and Shelf Science, 46: 917-934 https://doi.org/10.1006/ecss.1998.0328
  • Blomqvist, S., Gunnars, A. & Elmgren, R. (2004). Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: A matter of salt. Limnology and Oceanography, 49 (6): 2236–2241 https://doi.org/10.4319/lo.2004.49.6.2236
  • Bonometto, A., Feola, A., Rampazzo, F., Gion, C., Berto, D., Ponis, E. & Boscolo Brusà, R. (2019). Factors controlling sediment and nutrient fluxes in a small microtidal salt marsh within the Venice Lagoon. Science of the Total Environment, 650: 1832–1845. https://doi.org/10.1016/j.scitotenv.2018.09.142
  • Carniello, L. A. Defina, Fagherazzi, S. & D’Alpaos, L. (2005). A combined Wind Wave-Tidal Model for the Venice lagoon, Italy. Journal of Geophysical Research., 110, F04007. doi:10.1029/2008JF001157
  • Charbonnier, C., Anschutz, P., Tamborski, J. & van Beek, P. (2023). Benthic fluxes and mineralization processes at the scale of a coastal lagoon: Permeable versus fine-grained sediment contribution. Marine Chemistry, 254: 1-14. https://doi.org/10.1016/j.marchem.2023.104274
  • Chelsky, A., Pitt, K. A., Ferguson, A. J. P., Bennett, W. W., Teasdale, P. R. & Welsh, D. T. (2016). Decomposition of jellyfish carrion in situ: short-term impacts on infauna, benthic nutrient fluxes and sediment redox conditions. Science of The Total Environment, 566 (567): 929–937. https://doi.org/10.1016/j.scitotenv.2016.05.011
  • Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. & Wulff, F. (2002). Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environmental Science & Technology, 36: 5315–5320. https://doi.org/10.1021/es025763w.
  • Denis, L. & Grenz, C. (2003). Spatial variability in oxygen and nutrient fluxes at the sediment-water interface on the continental shelf in the Gulf of lions (NW Mediterranean). Acta Oceanologica, 26, 373–389. https://doi.org/10.1016/S0399-1784(03)00017-3
  • Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321: 926–929. https://doi.org/10.1126/science.1156401
  • Duce, R. A., LaRoche, J., Altier, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M., Ulloa, O., Voss, M., Ward B. & Zamora, L. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320: 893–897. https://doi.org/ 10.1126/science.1150369
  • Ermert, A. (2003). Turkey goes to court to protect Gediz Delta. http:/ /www. panda. org/ about_ wwf/ what_we _do/freshwater /news /news. cfm? uNews ID=5322 9.Jan.2003
  • Essoni, N. (1998). Etude de la dynamique des sels nutritifs et des métaux lourds en Relation avec la sédimentologie et l’hydrodynamique dans le large du golfe de Tunis. Ph.D. Thesis. Université De Tunis II, Tunus.
  • Fagherazzi, S., Palermo, C., Rulli, M. C., Carniello, L. & Defina, A. (2007). Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats. Journal of Geophysical Research, 112: 1-12. doi:10.1029/2006JF000572
  • Fagherazzi, S., Wiberg, P. L., Temmerman, S., Struyf, E., Zhao, Y. & Raymond, P. A. (2013). Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecological Processes, 2(3): 1-16. doi:10.1186/2192-1709-2-3.
  • Fox, A. L, & Trefry, J. H. (2018). Environmental dredging to remove fine-grained, organic-rich sediments and reduce inputs of nitrogen and phosphorus to a subtropical estuary. Marine Technology Society Journal, 52: 42–57. doi: 10.4031/mtsj.52.4.3.
  • Fox, A. L. & Trefry, J. H. (2023). Nutrient fluxes from recent deposits of fine-grained, organic-rich sediments in Florida estuary. Frontiers in Marine Science, 10: 1-21. https://doi.org/10.3389/fmars.2023.1305990
  • Ganju, N. K., Schoellhamer, D. H. & Bergamaschi, B. A. (2005). Suspended sediment fluxes in a tidal wetland: measurement, controlling factors, anderror analysis. Estuaries, 28: 812–822. doi:10.1007/BF02696011
  • Ganju, N. K., Nidzieko, N. J. & Kirwan M. L. (2013). Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model. Journal of Geophysical Research: Earth Surface, 118: 2045–2058. https://doi.org/10.1002/jgrf.20143
  • Grenz, C., Denis, L., Pringault, O. & Fichez, R. (2010). Spatial and seasonal variability of sediment oxygen consumption and nutrient fluxes at the sediment water interface in a sub-tropical lagoon (New Caledonia). Marine Pollution Bulletin, 61: 399–412. https://doi.org/10.1016/j.marpolbul.2010.06.014
  • Harris, L. A., Hodgkins, C. L. S., Day, M. C., Austin, D., Testa, J. M., Boynton, W., Van Der Tak, L. & Chen, N. W. (2015). Optimizing recovery of eutrophic estuaries: Impact of destratification and re-aeration on nutrient and dissolved oxygen dynamics. Ecological Engineering, 75: 470–483. doi: 10.1016/j.ecoleng.2014.028
  • Hyacinthe, C., Anschutz, P., Carbonel, P., Jauanneau, J. M. & Jorrisen, F. J. (2001). Early diagenetic processes in the muddy sediments of the bay of Biscay. Marine Geology, 177:111-128. https://doi.org/10.1016/S0025-3227(01)00127-X
  • Ingall, E. & Jahnke, R. (1997). Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology. 139 (1–4): 219–229. https://doi.org/10.1016/S0025-3227(96)00112-0.
  • Jin, H. Y., Chen, J. F., Weng, H. X., Li, H. L., Zhang, W. Y., Xu, J., Bai, Y. C. & Wang, K. (2009). Variations of paleoproductivity in the past decades and the environmental implications in the Changjiang Estuary in China. Acta Oceanologica Sinica, 31 (2): 113–119 (in Chinese with English abstract). DOI10.1007/s13131-010-0035-x
  • Jäntti, H. & Hietanen, S. (2012). The effects of hypoxia on sediment nitrogen cycling in the Baltic Sea. Ambio, 41 (2): 161–169. https://doi.org/10.1007/s13280-011-0233-6.
  • Jørgensen, K. S. (1989). Annual pattern of denitrification and nitrate ammonification in estuarine sediment. Applied and Environmental Microbiology, 55:1841–1847. https://doi.org/10.1128/aem.55.7.1841-1847.1989
  • Kendzierska, H., Lukawska-Matuszewska, K., Burska, D. & Janas, U. (2020). Benthic fluxes of oxygen and nutrients under the influence of macrobenthic fauna on the periphery of the intermittently hypoxic zone in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 530–531. https://doi.org/10.1016/j.jembe.2020.151439
  • Kim, S., Choi, A., Yang, E., Lee, S., & Hyun, J. (2016). Low benthic respiration and nutrient flux at the highly productive Amundsen Sea Polynya, Antarctica. Deep Sea Research, Part II 123: 92–101. https://doi.org/10.1016/j.dsr2.2015.10.004
  • Kim, S.H., Lee, J.S., Kim, K.T., Kim, S.L., Yu, O.H., Lim, D & Kim, S.H. (2020). Low benthic mineralization and nutrient flux in the continental shelf sedimenr of the northern East China Sea .Journal of Sea Research, 164, 101934. https://doi.org/10.1016/j.seares.2020.101934
  • Kristensen, E. & Kostka, J.E. (2005). Macrofaunal burrows and irrigation in marine sediment: Microbiological and biogeochemical interactions. In: Kristensen, E., Haese, R.R. & Kostka, J.E. (Eds.), Interaction between Marcro- and Microorganisms in Marine Sediments. American Geophysical Union, Washington, DC, pp. 125–157. https://doi.org/10.1029/CE060p0125
  • Lin, C., Ning, X., Su, J., Lin, Y. & Xu, B. (2005). Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000. Journal of Marine Systems, 55: 223–234. https://doi.org/10.1016/j.jmarsys.2004.08.001
  • Lorenzen, C. J. (1971). Chlorophyll-Degradation products in sediments of Black Sea. WoodsHole Oceanographic Institution Contribution No.2828, p.426–428.
  • Lourey, M.J., Alongi, D.M., Ryan, D.A.J. & Devlin, M.J. (2001). Variability of nutrient regeneration rates and nutrient concentrations in surface sediments of the northern Great Barrier Reef shelf. Continental Shelf Research. 21, 145–155. https://doi.org/10.1016/S0278-4343(00)00084-4
  • Ma, S., Yu, Q., Chen, G., Su, H., Tang, W., Sun, Y., Zhou, Z., Jiang, L., Zhu, J., Chen, L., Zhu, B. & Fan, J. (2022a). Above ground net primary productivity mediates the responses of soil respiration to nutrient additions in two tropical montane rainforests. Agricultural and Forest Meteorology, 327, 109200 https://doi.org/10.1016/j.agrformet.2022.109200
  • Ma, S., Chen, X., Su, H., Xing, A., Chen, G., Zhu, J., Zhu, B. & Fang, J. (2022b).. Phosphorus addition decreases soil fungal richness and alters fungal guilds in two tropical forests. Soil Biology and Biochemistry, 175, 108836 https://doi.org/10.1016/j. soilbio.2022.108836.
  • Martin, D. F. (1972). Marine chemistry, vol. 1 Analytical methods (p. 389). NY: Marcel Dekker Inc.
  • Mna, H. B., Alsubih, M., Oueslati, W., Helali, M. A., Amri, S., Added, A. & Aleya, L. (2022). Diagenetic processes and nutrients diffusive fluxes at the sediment-water interface in the Bizerte Lagoon (North Tunisia). Journal of African Earth Science, 196(3):1-15. https://doi.org/10.1016/j.jafrearsci.2022.104671
  • Minareci, O., Öztürk, M., Egemen, Ö. & Minareci, E. (2009). Detergent and Phosphate Pollution in Gediz River, Turkey. African Journal of Biotechnology, 8: 3568-3575. DOI: 10.5897/AJB09.167
  • Moraes, P. C., Sutti, B. O., Chiozzini, V. G. & Braga, E. S. (2023). Benthic aerobic respiration and nutrient fluxes in Cananéia-Iguape Estuarine-Lagoon complex along a salinity gradient. Ocean and Coastal Research, 71(1): 1-20. https://doi.org/10.1590/2675-2824071.22135pcm
  • Murray, L. G., Mudge, S. M., Newton, A. & Icely, J. D. (2006). The effect of benthic sediments on dissolved nutrient concentrations and fluxes. Biogeochemistry, 81:159–178. DOI 10.1007/s10533-006-9034-6
  • Ozkan, E. Y., Kocatas, A. & Buyukisik, B. (2008). Nutrient dynamics between sediment and overlying water in the inner part of Izmir Bay, Eastern Aegean. Environmental Monitoring and Assessment, 143:313–325. DOI 10.1007/s10661-007-9984-8
  • Parlak, H., Çakır A., Boyacıoğlu, M. & Çakal Arslan, Ö. (2006). Heavy Metal Deposition in Sediments from the Delta of the Gediz River (Western Turkey): A Preliminary Study. E.U. Journal of Fisheries & Aquatic Sciences, 23 (3-4): 445–448.
  • Rigaud, S., Radakovitch, O., Couture, R. M., Bruno Deflandre, B., Cossa, D., Garniere, C. & Garnier, J. M. (2013). Mobility and fluxes of trace elements and nutrients at the sediment–water interface of a lagoon under contrasting water column oxygenation conditions. Applied Geochemistry, 31: 35–51. https://doi.org/10.1016/j.apgeochem.2012.12.003
  • Sıkı, M. (2002). The Birds of Gediz Delta (Izmir Bird Paradise). Ekoloji, 11: 11-16.
  • Sisman Aydın, G. & Simsek, K. (2015). Homa Dalyanı (Izmir) Derinlestirme Çalısmalarının Nutrient Degisimleri Üzerine Etkilerinin Izlenmesi. 18. Ulusal Su Ürünleri Sempozyumu, İzmir.
  • Somay, A. M., & Filiz, S. (2003). Hidrology, hydrogeology and hydrochemistry of wetlands: a case study in Izmir Bird Paradise, Turkey. Environmental Geology, 43: 825–835. DOI 10.1007/s00254-002-0697-6
  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis, Bull. No. 167 (p. 310). Ottawa: Fisheries Research Board of Canada.
  • Timmermann, K., Banta, S.T. & Glud, R.N. (2006). Linking Arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments. Journal of Marine Research. 64, 915–938. DOI: 10.1357/002224006779698378
  • Tosunoglu, Z., Ünal, V., Kaykaç, M. H., Mermer, A. & Onem, R. (2015). Ege Dalyanlarının Güncel Durumu. Ege Üniversitesi Bilimsel Arastırma Projesi. No. SUF/006. Izmir, 332p.
  • Uluturhan, E., Kontas, A. & Can, E. (2011). Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): Assessment of contamination and ecological risks. Marine Pollution Bulletin, 1989-1997. https://doi.org/10.1016/j.marpolbul.2011.06.019
  • Zhang, L., Wang, L., Yin, K., Lü, Y., Yang, Y. & Huang, X. (2013). Spatial and seasonal variations of nutrients in sediment profiles and their sediment-water fluxes in the Pearl River Estuary, Southern China. Journal Earth Science, 25: 197–206 https://doi.org/10.1007/s12583-014-0413-y
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Emine Erdem Yürür 0000-0001-7280-5797

Hasan Baha Büyükışık 0000-0002-5855-4300

Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 12 Ocak 2025
Kabul Tarihi 12 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Yürür, E. E., & Büyükışık, H. B. (2025). Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey). Memba Su Bilimleri Dergisi, 11(1), 10-23. https://doi.org/10.58626/memba.1667313
AMA Yürür EE, Büyükışık HB. Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey). Memba Su Bilimleri Dergisi. Mart 2025;11(1):10-23. doi:10.58626/memba.1667313
Chicago Yürür, Emine Erdem, ve Hasan Baha Büyükışık. “Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey)”. Memba Su Bilimleri Dergisi 11, sy. 1 (Mart 2025): 10-23. https://doi.org/10.58626/memba.1667313.
EndNote Yürür EE, Büyükışık HB (01 Mart 2025) Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey). Memba Su Bilimleri Dergisi 11 1 10–23.
IEEE E. E. Yürür ve H. B. Büyükışık, “Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey)”, Memba Su Bilimleri Dergisi, c. 11, sy. 1, ss. 10–23, 2025, doi: 10.58626/memba.1667313.
ISNAD Yürür, Emine Erdem - Büyükışık, Hasan Baha. “Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey)”. Memba Su Bilimleri Dergisi 11/1 (Mart 2025), 10-23. https://doi.org/10.58626/memba.1667313.
JAMA Yürür EE, Büyükışık HB. Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey). Memba Su Bilimleri Dergisi. 2025;11:10–23.
MLA Yürür, Emine Erdem ve Hasan Baha Büyükışık. “Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey)”. Memba Su Bilimleri Dergisi, c. 11, sy. 1, 2025, ss. 10-23, doi:10.58626/memba.1667313.
Vancouver Yürür EE, Büyükışık HB. Nutrients in Sediment and Overlying Water in the Homa Lagoon of İzmir Bay (Aegean Sea, Turkey). Memba Su Bilimleri Dergisi. 2025;11(1):10-23.

Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi olarak 2013'te kurulan dergimiz,
MEMBA Su Bilimleri Dergisi olarak yayın hayatına devam etmektedir.
-----------
Su bilimleri alanında biyoloji, ekoloji, içsular, balık besleme, balık avcılığı, balıkçılık teknolojisi, balıkçılık ekonomisi ve yönetimi, su ürünleri işleme teknolojileri, su kimyası, mikrobiyoloji, alg biyoteknolojisi, denizel organizmaların korunması, acısu ve tatlı su habitatları ve kirlilik, ekotoksikoloji, tarımsal ve çevresel sürdürülebilirlik, iklim ve bitki büyüme modelleri, iklim değişikliği, doğal afetler, hidrometeorolojik afetler, uzaktan algılama, coğrafi bilgi teknolojileri, kıyısal alanlar, kurak ve yarıkurak topografyalar, mekansal analiz ve modelleme, biyocoğrafya, fiziki coğrafya, beşeri ve ekonomik coğrafya, jeomorfoloji, çevresel sorunlar, hayvansal ve bitkisel biyoteknoloji, hayvansal ve bitkisel üretim alanlarında İngilizce ve Türkçe orjinal makaleler, kısa notlar, teknik notlar, raporlar ve derlemeleri yılda dört sayı (Mart, Haziran, Eylül, Aralık) olarak yayınlanan online, açık erişimli, uluslararası hakemli dergidir.

Memba Su Bilimleri Dergisi
TRDizin, SOBIAD, ASCI, CAB Direct, Google Scholar, Paperity, Asosindex, Academic Journal Index, CNKI Scholar
dizinlerinde taranmaktadır.
----------
Dergimize makale yükleme sırasında intihal benzerlik raporu yüklemek zorunlu ve bu raporun intihal benzerlik oranının % 30'un altında olması gerekmektedir. Bu raporu yazarlar makale yükleme sırasında göndermelidir.
Dergimize yüklenen Türkçe ve İngilizce makalelerde Türkçe ve İngilizce özetlerin bulunması zorunludur.