Abdelrahman M.A.E, Moaaz O., ”On the New Class of The Nonlinear Rational Difference Equations,” Electronic Journal of Mathematical Analysis and Applications, 6 (1), 117-125, (2018).
Ahmed A.E.S., Iriˇcanin B., KosmalaW., Stevi´c S., Smarda Z, ”Note on constructing a family of solvable sine-type difference equations,” Advances in Difference Equations, 2021(1), 1-11, (2021).
Agarwal R.P., ”Difference Equations and Inequalities,” Marcel Dekker, New York, 1992, 2nd edition, 2000.
Agarwal R.P.and Elsayed E.M., ”Periodicity and stability of solutions of higher order rational difference equation,” Advanced Studies in Contemporary Mathematics, 17(2), 181-201, (2008).
Agarwal R.P.and Elsayed E.M., ”On the solution of fourthorder rational recursive sequence,” Advanced Studies in Contemporary Mathematics, 20(4), 525-545 (2010).
Aloqeili M., ”Dynamics of a rational difference equation,” Applied Mathematics and Computation, 176(2), 768-774, (2006).
Amleh A.M., Grove G.A., Ladas G., Georgiou, D.A., ”On the recursive sequence 𝑦𝑚+1 = 𝛼 + 𝑦𝑚−1 𝑦𝑚 ,” J. of Math. Anal. App. 233, 790-798 (1999).
Belhannache F., Touafek N., Abo-Zeid, R., ”On a higherorder rational difference equation,” J. Appl. Math. Informatics, 34(5-6), 369-382, (2016).
Bilgin A., Kulenovi´c M.R.S., ”Global asymptotic stability for discrete single species population models,” Discrete Dynamics in Nature and Society, 2017. Article ID 5963594, 15.
Cinar C., ”On the positive solutions of the difference equation 𝜓𝑚+1 = 𝑎𝜓𝑚−1 1+𝑏𝜓𝑚𝜓𝑚−1 ,” J. of App. Math. Comp., 156(2), 587-590 (2004).
Cinar C., Mansour T., Yalcinkaya I., On the difference equation of higher order,” Utilitas Mathematica, 92, 161- 166 (2013).
Das S.E., Bayram M., ”On a system of rational difference equations,” World Applied Sciences Journal, 10(11), 1306-1312 (2010).
Ibrahim T.F., Khan A.Q., Ogul, B., S¸ims¸ek, D., ”Closed- Form Solution of a Rational Difference Equation,” Mathematical Problems in Engineering, 2021.
Ibrahim T.F., Khan A.Q., Ibrahim, A., ”Qualitative behavior of a nonlinear generalized recursive sequence with delay,” Mathematical Problems in Engineering, (2021).
Khan A.Q., El-Metwally H., ”Global dynamics, boundedness, and semicycle analysis of a difference equation,” Discrete Dynamics in Nature and Society, (2021).
Kocic V.L., Ladas G., ”Global behavior of nonlinear difference equations of higher order with applications,” volume 256 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993.
Kulenovic M.R.S., Ladas G., ”Dynamics of second order rational difference equations” Chapman & Hall/CRC, Boca Raton, FL, 2002. With open problems and conjectures.
Rahaman M., Mondal S.P., Algehyne E.A., Biswas A., Alam S, ”A method for solving linear difference equation in Gaussian fuzzy environments,” Granular Computing, 7(1), 63-76, (2021).
Simsek D., Abdullayev F.G., ”On the Recursive Sequence 𝜓𝑚+1 = 𝜓𝑚−(𝑘+1) 1+𝜓𝑚𝜓𝑚−1...𝜓𝑚−𝑘 ,” Journal of Mathematical Sciences, 234(1), 73-81 (2018) .
Sims¸ek D., Ogul B., Cinar C., ”Solution of the rational difference equation 𝜓𝑚+1 = 𝜓𝑚−17 1+𝜓𝑚−5𝜓𝑚−11 ,” Filomat, 33(5), 1353-1359, (2019).
B. Ogul, D. Simsek, T.F. Ibrahim / MANAS Journal of Engineering, 11 (1) (2023) 165
Stevic S., ”A note on periodic character of a higher order difference equation,” Rostock. Math. Kolloq., 61 2-30, (2006).
Stevic S., Iricanin B., Kosmala W., Smarda Z., ”On a nonlinear second-order difference equation,” Journal of Inequalites and Applications, 2022(1), (2022).
Soykan Y., Tas¸demir E., G¨ocen M, ”Binomial transform of the generalized third-order Jacobsthal sequence, Asian- European Journal of Mathematics, (2022).
Tas¸demir E., ”On the global asymptotic stability of a system of difference equations with quadratic terms,” Journal of Applied Mathematics and Computing, 1-15, (2020).
Yalcinkaya ˙I., C¸ alıs¸kan V., Tollu D.T., ”On a nonlinear fuzzy difference equation,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 68-78, (2022).
The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order
We explore the dynamics of adhering to rational difference formula ψm+1=±1±ψm−2ψm−5ψm−8ψm−11ψm−14ψm−17ψm−20ψm−20,m∈N0
where the initials are arbitrary nonzero real numbers. Specifically, we examine global asymptotically stability. Additionally, we provide examples and solutions graphs of some special cases.
Abdelrahman M.A.E, Moaaz O., ”On the New Class of The Nonlinear Rational Difference Equations,” Electronic Journal of Mathematical Analysis and Applications, 6 (1), 117-125, (2018).
Ahmed A.E.S., Iriˇcanin B., KosmalaW., Stevi´c S., Smarda Z, ”Note on constructing a family of solvable sine-type difference equations,” Advances in Difference Equations, 2021(1), 1-11, (2021).
Agarwal R.P., ”Difference Equations and Inequalities,” Marcel Dekker, New York, 1992, 2nd edition, 2000.
Agarwal R.P.and Elsayed E.M., ”Periodicity and stability of solutions of higher order rational difference equation,” Advanced Studies in Contemporary Mathematics, 17(2), 181-201, (2008).
Agarwal R.P.and Elsayed E.M., ”On the solution of fourthorder rational recursive sequence,” Advanced Studies in Contemporary Mathematics, 20(4), 525-545 (2010).
Aloqeili M., ”Dynamics of a rational difference equation,” Applied Mathematics and Computation, 176(2), 768-774, (2006).
Amleh A.M., Grove G.A., Ladas G., Georgiou, D.A., ”On the recursive sequence 𝑦𝑚+1 = 𝛼 + 𝑦𝑚−1 𝑦𝑚 ,” J. of Math. Anal. App. 233, 790-798 (1999).
Belhannache F., Touafek N., Abo-Zeid, R., ”On a higherorder rational difference equation,” J. Appl. Math. Informatics, 34(5-6), 369-382, (2016).
Bilgin A., Kulenovi´c M.R.S., ”Global asymptotic stability for discrete single species population models,” Discrete Dynamics in Nature and Society, 2017. Article ID 5963594, 15.
Cinar C., ”On the positive solutions of the difference equation 𝜓𝑚+1 = 𝑎𝜓𝑚−1 1+𝑏𝜓𝑚𝜓𝑚−1 ,” J. of App. Math. Comp., 156(2), 587-590 (2004).
Cinar C., Mansour T., Yalcinkaya I., On the difference equation of higher order,” Utilitas Mathematica, 92, 161- 166 (2013).
Das S.E., Bayram M., ”On a system of rational difference equations,” World Applied Sciences Journal, 10(11), 1306-1312 (2010).
Ibrahim T.F., Khan A.Q., Ogul, B., S¸ims¸ek, D., ”Closed- Form Solution of a Rational Difference Equation,” Mathematical Problems in Engineering, 2021.
Ibrahim T.F., Khan A.Q., Ibrahim, A., ”Qualitative behavior of a nonlinear generalized recursive sequence with delay,” Mathematical Problems in Engineering, (2021).
Khan A.Q., El-Metwally H., ”Global dynamics, boundedness, and semicycle analysis of a difference equation,” Discrete Dynamics in Nature and Society, (2021).
Kocic V.L., Ladas G., ”Global behavior of nonlinear difference equations of higher order with applications,” volume 256 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993.
Kulenovic M.R.S., Ladas G., ”Dynamics of second order rational difference equations” Chapman & Hall/CRC, Boca Raton, FL, 2002. With open problems and conjectures.
Rahaman M., Mondal S.P., Algehyne E.A., Biswas A., Alam S, ”A method for solving linear difference equation in Gaussian fuzzy environments,” Granular Computing, 7(1), 63-76, (2021).
Simsek D., Abdullayev F.G., ”On the Recursive Sequence 𝜓𝑚+1 = 𝜓𝑚−(𝑘+1) 1+𝜓𝑚𝜓𝑚−1...𝜓𝑚−𝑘 ,” Journal of Mathematical Sciences, 234(1), 73-81 (2018) .
Sims¸ek D., Ogul B., Cinar C., ”Solution of the rational difference equation 𝜓𝑚+1 = 𝜓𝑚−17 1+𝜓𝑚−5𝜓𝑚−11 ,” Filomat, 33(5), 1353-1359, (2019).
B. Ogul, D. Simsek, T.F. Ibrahim / MANAS Journal of Engineering, 11 (1) (2023) 165
Stevic S., ”A note on periodic character of a higher order difference equation,” Rostock. Math. Kolloq., 61 2-30, (2006).
Stevic S., Iricanin B., Kosmala W., Smarda Z., ”On a nonlinear second-order difference equation,” Journal of Inequalites and Applications, 2022(1), (2022).
Soykan Y., Tas¸demir E., G¨ocen M, ”Binomial transform of the generalized third-order Jacobsthal sequence, Asian- European Journal of Mathematics, (2022).
Tas¸demir E., ”On the global asymptotic stability of a system of difference equations with quadratic terms,” Journal of Applied Mathematics and Computing, 1-15, (2020).
Yalcinkaya ˙I., C¸ alıs¸kan V., Tollu D.T., ”On a nonlinear fuzzy difference equation,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 68-78, (2022).
Oğul, B., Şimşek, D., & Tarek Fawzi Abdelhamid, I. (2023). The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MANAS Journal of Engineering, 11(1), 158-165. https://doi.org/10.51354/mjen.1233063
AMA
Oğul B, Şimşek D, Tarek Fawzi Abdelhamid I. The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MJEN. July 2023;11(1):158-165. doi:10.51354/mjen.1233063
Chicago
Oğul, Burak, Dağıstan Şimşek, and Ibrahim Tarek Fawzi Abdelhamid. “The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order”. MANAS Journal of Engineering 11, no. 1 (July 2023): 158-65. https://doi.org/10.51354/mjen.1233063.
EndNote
Oğul B, Şimşek D, Tarek Fawzi Abdelhamid I (July 1, 2023) The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MANAS Journal of Engineering 11 1 158–165.
IEEE
B. Oğul, D. Şimşek, and I. Tarek Fawzi Abdelhamid, “The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order”, MJEN, vol. 11, no. 1, pp. 158–165, 2023, doi: 10.51354/mjen.1233063.
ISNAD
Oğul, Burak et al. “The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order”. MANAS Journal of Engineering 11/1 (July 2023), 158-165. https://doi.org/10.51354/mjen.1233063.
JAMA
Oğul B, Şimşek D, Tarek Fawzi Abdelhamid I. The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MJEN. 2023;11:158–165.
MLA
Oğul, Burak et al. “The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order”. MANAS Journal of Engineering, vol. 11, no. 1, 2023, pp. 158-65, doi:10.51354/mjen.1233063.
Vancouver
Oğul B, Şimşek D, Tarek Fawzi Abdelhamid I. The Solution and Dynamic Behaviour of Difference Equations of Twenty-First Order. MJEN. 2023;11(1):158-65.