Araştırma Makalesi
BibTex RIS Kaynak Göster

Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces

Yıl 2020, Cilt: 2 Sayı: 1, 14 - 26, 30.04.2020

Öz

We define Noor iteration procedure and, Abbas and Nazir iteration procedure associated
with three self maps in the setting of convex metric spaces . We prove that these
iterations converge strongly to a unique common fixed point of three nonlinear quasicontractive
self maps in convex metric spaces. One of our results (Theorem 2.2) extend
the results of Sastry, Babu and Srinivasa Rao [10].

Kaynakça

  • [1] M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik., 66(2) (2014), 223-234.
  • [2] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999.
  • [3] L. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., ´ 45(2) (1974), 267-273.
  • [4] L. B. Ciric, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi- ´ contractive mappings, Indian J. Pure Appl. Math., 30(4) (1999), 425-433.
  • [5] X. P. Ding, Iteration processes for nonlinear mappings in convex metric spaces, J. Math. Anal. Appl., 132(1) (1988), 114-122.
  • [6] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1) (1974), 147-150.
  • [7] M. Moosaei, Fixed point theorems in convex metric spaces, Fixed Point Theory and Appl., Vol. 2012(2012), Article 164, 6 pages.
  • [8] M. A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251(1) (2000), 217-229.
  • [9] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for nonlinear quasi-contractive mappings in convex metric spaces, Tamkang J. Math., 32(2) (2001), 117-126.
  • [10] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for a nonlinear quasi-contractive pair of selfmaps in convex metric spaces, Indian J. Pure Appl. Math., 33(2) (2002), 203-214.
  • [11] W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep., 22(2) (1970), 142-149.
Yıl 2020, Cilt: 2 Sayı: 1, 14 - 26, 30.04.2020

Öz

Kaynakça

  • [1] M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik., 66(2) (2014), 223-234.
  • [2] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999.
  • [3] L. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., ´ 45(2) (1974), 267-273.
  • [4] L. B. Ciric, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi- ´ contractive mappings, Indian J. Pure Appl. Math., 30(4) (1999), 425-433.
  • [5] X. P. Ding, Iteration processes for nonlinear mappings in convex metric spaces, J. Math. Anal. Appl., 132(1) (1988), 114-122.
  • [6] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1) (1974), 147-150.
  • [7] M. Moosaei, Fixed point theorems in convex metric spaces, Fixed Point Theory and Appl., Vol. 2012(2012), Article 164, 6 pages.
  • [8] M. A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251(1) (2000), 217-229.
  • [9] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for nonlinear quasi-contractive mappings in convex metric spaces, Tamkang J. Math., 32(2) (2001), 117-126.
  • [10] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for a nonlinear quasi-contractive pair of selfmaps in convex metric spaces, Indian J. Pure Appl. Math., 33(2) (2002), 203-214.
  • [11] W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep., 22(2) (1970), 142-149.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Gedala Satyanarayana

G. V. R. Babu

Yayımlanma Tarihi 30 Nisan 2020
Kabul Tarihi 2 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 2 Sayı: 1

Kaynak Göster

APA Satyanarayana, G., & Babu, G. V. R. (2020). Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics, 2(1), 14-26.
AMA Satyanarayana G, Babu GVR. Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics. Nisan 2020;2(1):14-26.
Chicago Satyanarayana, Gedala, ve G. V. R. Babu. “Convergence of Noor, and Abbas and Nazir Iteration Procedures for a Class of Three Nonlinear Quasi Contractive Maps in Convex Metric Spaces”. Maltepe Journal of Mathematics 2, sy. 1 (Nisan 2020): 14-26.
EndNote Satyanarayana G, Babu GVR (01 Nisan 2020) Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics 2 1 14–26.
IEEE G. Satyanarayana ve G. V. R. Babu, “Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces”, Maltepe Journal of Mathematics, c. 2, sy. 1, ss. 14–26, 2020.
ISNAD Satyanarayana, Gedala - Babu, G. V. R. “Convergence of Noor, and Abbas and Nazir Iteration Procedures for a Class of Three Nonlinear Quasi Contractive Maps in Convex Metric Spaces”. Maltepe Journal of Mathematics 2/1 (Nisan 2020), 14-26.
JAMA Satyanarayana G, Babu GVR. Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics. 2020;2:14–26.
MLA Satyanarayana, Gedala ve G. V. R. Babu. “Convergence of Noor, and Abbas and Nazir Iteration Procedures for a Class of Three Nonlinear Quasi Contractive Maps in Convex Metric Spaces”. Maltepe Journal of Mathematics, c. 2, sy. 1, 2020, ss. 14-26.
Vancouver Satyanarayana G, Babu GVR. Convergence of Noor, and Abbas and Nazir iteration procedures for a class of three nonlinear quasi contractive maps in convex metric spaces. Maltepe Journal of Mathematics. 2020;2(1):14-26.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660