Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 6 Sayı: 2, 90 - 102
https://doi.org/10.47087/mjm.1515500

Öz

Kaynakça

  • M.E. Abd El-Monsef, S.N. El-Deeb, and R.A. Mahmoud, β-open sets and β-continuous Mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77-90.
  • A. Acikgoz, H. Cakalli, F. Esenbel, and Lj.D.R. Kočinac, A quest of G-continuity in neutrosophic spaces, Math. Meth. Appl. Sci. 44 (9) (2021) 7834-7844.
  • A. Acikgoz, and F. Esenbel, Neutrosophic Connected topological spaces, Fasc. Math. 66 (2023) 5-22.
  • A. Acikgoz, F. Esenbel and O. Mucuk, Neutrosophication β-Compactness, Seventh International Conference of Mathematical Sciences (ICMS 2023) Abstract Book page 17 Maltepe University Istanbul Turkey.
  • A. Acikgoz, and F. Esenbel F. Neutrosophic seperation axioms, Maltepe J Math. 5(2), (2023) 32–40.
  • B. Ganesan, On fuzzy β-compact spaces and fuzzy β-extremally disconnected spaces, Kybernetika [cybernetics] 33(3) (1997) 271-277.
  • R. Dhavaseelan, S. Jafari, C. Ozel, and C.M. A Al-Shumrani, Generalized neutrosophic contra-continuity, In: F Smarandache, S Pramanik, eds. New Trends in Neutrosophic Theory and Applications Vol. II (2018) 365-380.
  • I.M. Hanafy, Fuzzy β-Compactness and Fuzzy β-Closed Spaces, Turk J Math. 28 (2004) 281–293.
  • A.A. Salama, and S.A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR J. Math. 3 (2012) 31-35.
  • F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005) 287-297.

NEUTROSOPHICATION β-COMPACTNESS

Yıl 2024, Cilt: 6 Sayı: 2, 90 - 102
https://doi.org/10.47087/mjm.1515500

Öz

In this study, we first define the concept of neutrosophic beta-open set. Then, using this new set definition, we present neutrosophic beta-compact and neutrosophic beta-closed spaces and examine their properties. Also, we classify these spaces using the concept of neutrosophic filterbase, which is introduced for the first time in this study. And, relationships between these different types and forms of compactness are investigated.

Kaynakça

  • M.E. Abd El-Monsef, S.N. El-Deeb, and R.A. Mahmoud, β-open sets and β-continuous Mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77-90.
  • A. Acikgoz, H. Cakalli, F. Esenbel, and Lj.D.R. Kočinac, A quest of G-continuity in neutrosophic spaces, Math. Meth. Appl. Sci. 44 (9) (2021) 7834-7844.
  • A. Acikgoz, and F. Esenbel, Neutrosophic Connected topological spaces, Fasc. Math. 66 (2023) 5-22.
  • A. Acikgoz, F. Esenbel and O. Mucuk, Neutrosophication β-Compactness, Seventh International Conference of Mathematical Sciences (ICMS 2023) Abstract Book page 17 Maltepe University Istanbul Turkey.
  • A. Acikgoz, and F. Esenbel F. Neutrosophic seperation axioms, Maltepe J Math. 5(2), (2023) 32–40.
  • B. Ganesan, On fuzzy β-compact spaces and fuzzy β-extremally disconnected spaces, Kybernetika [cybernetics] 33(3) (1997) 271-277.
  • R. Dhavaseelan, S. Jafari, C. Ozel, and C.M. A Al-Shumrani, Generalized neutrosophic contra-continuity, In: F Smarandache, S Pramanik, eds. New Trends in Neutrosophic Theory and Applications Vol. II (2018) 365-380.
  • I.M. Hanafy, Fuzzy β-Compactness and Fuzzy β-Closed Spaces, Turk J Math. 28 (2004) 281–293.
  • A.A. Salama, and S.A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR J. Math. 3 (2012) 31-35.
  • F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005) 287-297.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Articles
Yazarlar

Ahu Açıkgöz 0000-0003-1468-8240

Ferhat Esenbel

Osman Mucuk 0000-0001-7411-2871

Erken Görünüm Tarihi 6 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 12 Temmuz 2024
Kabul Tarihi 20 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Açıkgöz, A., Esenbel, F., & Mucuk, O. (2024). NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics, 6(2), 90-102. https://doi.org/10.47087/mjm.1515500
AMA Açıkgöz A, Esenbel F, Mucuk O. NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics. Kasım 2024;6(2):90-102. doi:10.47087/mjm.1515500
Chicago Açıkgöz, Ahu, Ferhat Esenbel, ve Osman Mucuk. “NEUTROSOPHICATION β-COMPACTNESS”. Maltepe Journal of Mathematics 6, sy. 2 (Kasım 2024): 90-102. https://doi.org/10.47087/mjm.1515500.
EndNote Açıkgöz A, Esenbel F, Mucuk O (01 Kasım 2024) NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics 6 2 90–102.
IEEE A. Açıkgöz, F. Esenbel, ve O. Mucuk, “NEUTROSOPHICATION β-COMPACTNESS”, Maltepe Journal of Mathematics, c. 6, sy. 2, ss. 90–102, 2024, doi: 10.47087/mjm.1515500.
ISNAD Açıkgöz, Ahu vd. “NEUTROSOPHICATION β-COMPACTNESS”. Maltepe Journal of Mathematics 6/2 (Kasım 2024), 90-102. https://doi.org/10.47087/mjm.1515500.
JAMA Açıkgöz A, Esenbel F, Mucuk O. NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics. 2024;6:90–102.
MLA Açıkgöz, Ahu vd. “NEUTROSOPHICATION β-COMPACTNESS”. Maltepe Journal of Mathematics, c. 6, sy. 2, 2024, ss. 90-102, doi:10.47087/mjm.1515500.
Vancouver Açıkgöz A, Esenbel F, Mucuk O. NEUTROSOPHICATION β-COMPACTNESS. Maltepe Journal of Mathematics. 2024;6(2):90-102.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660