In this paper, a fractional-order generalization of the susceptible-infected-recovered (SIR) epidemic model for predicting the spread of an infectious disease is presented. Also, an incommensurate fractional-order differential equations system involving the Caputo meaning fractional derivative is used. The equilibria are calculated and their stability conditions are investigated. Finally, numerical simulations are presented to illustrate the obtained theoretical results.
SIR mathematical model incommensurate order differential equation fractional-derivative stability analysis
Birincil Dil | İngilizce |
---|---|
Konular | Biyoinformatik ve Hesaplamalı Biyoloji, Uygulamalı Matematik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 30 Eylül 2021 |
Gönderilme Tarihi | 17 Eylül 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 1 Sayı: 1 |