Correlation analysis is used to quantify the degree of linear association between two variables. Correlation coefficient is showed as “r” and it may have values between (-) 1 and (+)1. The symbols (-) or (+) in front of “r coefficient” show the direction of correlation. The direction of association does not affect the strength of association. A “ r coefficient” which is equal or greater than 0.70 is accepted as a good association. Correlation coeefficient only remarks the strength of association. Finding a good correlation coefficient between two variables does not explain a causal relationship between these two variables. Statistical significance is much affected from sample size in also correlation analysis. Square of corrrelation coefficient is described as coefficient of determination. Correlation coefficient is also much affected from outliers as standard deviation does. The proper test selection may vary depend on the type of variable and their distribution characteristics (ordinal, continuous, normally distributed or not). Pearson, Spearman and Kendall’s tau-B tests are the most common used tests. Partial correlation provides the explanation of the association between two variables when the third variable was controlled. When we interpret the correlation analysis results we firstly evaluate the strength of association and then indicate whether it is also statistically significant or not.
Bağıntı analizi iki değişken arasındaki doğrusal ilişkinin boyutunu belirlemede kullanılan analizdir. Bağıntı katsayısı “r” simgesi ile gösterilir ve (–)1 ile (+)1 arasında değişen değerler alabilir. Bağıntı katsayısının başındaki “-“ ya da “+” işareti, bağıntının yönünü belirtir. İlişkinin yönü, ilişkinin gücünü etkilemez. İyi derecede ilişki için r katsayısı 0.70 ve üzerinde olmalıdır. Bağıntı katsayısı, yalnızca doğrusal ilişkinin derecesini belirtir. Bağıntı katsayısının büyük bulunması, tek başına neden-sonuç ilişkisini açıklamaz. Bağıntı analizinde de istatistiksel önemlilik örneklem büyüklüğünden çok etkilenir. Buna karşılık, bağıntı katsayısı değişkenlerin ölçüldüğü birimlerden etkilenmez. Bağıntı katsayısının karesi (R2) açıklayıcılık katsayısı olarak tanımlanır. Bağıntı katsayısı da, standart sapma gibi uç değerlerden çok etkilenir. Bağıntı analizinde incelenen değişkenin tipine ve dağılım özelliğine (sıralı, sürekli, normal dağılıma uyuyor, uymuyor gibi) göre uygun olan test seçimi değişebilir. Pearson, Spearman ve Kendall’ın tau-B testleri en yaygın kullanılan testlerdir. Kısmi bağıntı ise üçüncü bir değişkenin etkisi kontrol altına alındığında, iki değişken arasındaki ilişkiyi açıklamayı sağlar. Bağıntı analizi sonuçlarını yorumlarken öncelikle ilişkinin gücünü değerlendirmeli ve bulunan bu sonucun istatistiksel olarak da önemli olup olmadığı vurgulanmalıdır.
Birincil Dil | Türkçe |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 1 Nisan 2012 |
Yayımlandığı Sayı | Yıl 2012 Cilt: 2 Sayı: 4 |