Derleme
BibTex RIS Kaynak Göster

Abnormal Expression of miRNA in Women with Polycystic Ovary Syndrome (PCOS)

Yıl 2023, , 183 - 191, 19.10.2023
https://doi.org/10.55517/mrr.1324616

Öz

Polycystic ovary syndrome (PCOS) is a debilitating endocrine and metabolic disorder that affects a large proportion of women in their reproductive years. It differs by a range of symptoms including polycystic ovary appearance, hyperandrogenism, chronic anovulation, insulin resistance, and obesity. Despite years of research, the exact cause of PCOS remains elusive, but recent studies have suggested that epigenetic mechanisms may play a significant role in its pathogenesis. Of particular interest are micro-RNAs (miRNAs), short non-coding RNAs that are transcribed from DNA but not translated into protein. Recent research has demonstrated that abnormal expression of miRNAs is present in PCOS and may contribute to the development and progression of the disease. This review aims to provide an in-depth analysis of the current knowledge and challenges related to abnormal miRNA expression in PCOS, shedding light on a potential avenue for targeted therapies and improved management of this debilitating condition. The review summarizes the findings from various studies that have investigated the role of miRNAs in PCOS. It discusses the specific miRNAs that have been found to be dysregulated in PCOS and their potential impact on the pathophysiology of the disease. The review also highlights the challenges associated with studying miRNAs, including the complexity of their regulation and the need for standardized methodologies for miRNA profiling. Based on the available evidence, abnormal expression of miRNAs appears to be a significant contributor to the development and progression of PCOS. Targeting these dysregulated miRNAs could offer new therapeutic strategies for the management of PCOS. Biomarkers and gene therapies associated with miRNA may improve the accuracy and effectiveness of PCOS diagnosis and treatment. However, further research is needed to fully understand the functional roles of specific miRNAs and their potential as diagnostic or therapeutic targets.

Kaynakça

  • March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample was assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–551.
  • 2. Meier RK. Polycystic Ovary Syndrome. Nurs Clin North Am. 2018;53(3):407–420.
  • Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106 (1):6–15.
  • Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev. 2016;37(5):467–520.
  • Escobar-Morreale HF. Polycystic ovary syndrome: definition, etiology, diagnosis, and treatment. Nat Rev Endocrinol. 2018;14(5):270–284.
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–531.
  • Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741.
  • Lin L, Du T, Huang J, Huang LL, Yang DZ. Identification of differentially expressed microRNAs in the ovary of polycystic ovary syndrome with hyperandrogenism and insulin resistance. Chin Med J (Engl). 2015;128(2):169–174.
  • Diamanti-Kandarakis E, Christakou CD, Kandarakis SA. Polycystic ovary syndrome: pathophysiology, molecular aspects, and clinical implications. Expert Rev Mol Med. 2008;10:e3.
  • Ndefo UA, Eaton A, Green MR. Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. P T. 2013;38(6):336–355.
  • Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981-1030.
  • Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565-4592.
  • Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602-1618.
  • Yu Y, Li G, He X, Lin Y, Chen Z, Lin X, Xu H. MicroRNA-21 regulates the cell apoptosis and cell proliferation of polycystic ovary syndrome (PCOS) granulosa cells through target toll-like receptor TLR8. Bioengineered. 2021;12(1):5789-5796.
  • Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068-3079.
  • Mu J, Yu P, Li Q. microRNA-103 Contributes to Progression of Polycystic Ovary Syndrome Through Modulating the IRS1/PI3K/AKT Signal Axis. Arch Med Res. 2021;52(5):494-504.
  • Nanda D, Chandrasekaran SP, Ramachandran V, Kalaivanan K, Carani Venkatraman A. Evaluation of Serum miRNA-24, miRNA-29a, and miRNA-502-3p Expression in PCOS Subjects: Correlation with Biochemical Parameters Related to PCOS and Insulin Resistance. Indian J Clin Biochem. 2020;35(2):169-178.
  • Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of MicroRNAs in Human Follicular Fluid: Characterization of MicroRNAs That Govern Steroidogenesis in Vitro and Are Associated With Polycystic Ovary Syndrome in Vivo. J Clin Endocrinol Metab. 2013;98(7):3068-3079.
  • Butler AE, Ramachandran V, Hayat S, Dargham SR, Cunningham TK, Benurwar M, et al. Expression of microRNA in follicular fluid in women with and without PCOS. Sci Rep. 2019;9(1):16306.
  • Chen B, Xu P, Wang J, Zhang C. The role of miRNA in polycystic ovary syndrome (PCOS). Gene. 2019; 706:91-96.
  • Chen L, Kong C. LINC00173 regulates polycystic ovarian syndrome progression by promoting apoptosis and repressing proliferation in ovarian granulosa cells via the microRNA-124-3p (miR-124-3p)/jagged canonical Notch ligand 1 (JAG1) pathway. Bioengineered. 2022;13(4):10373-10385.
  • Zhou Z, Tu Z, Zhang J, Tan C, Shen X, Wan B, et al. Follicular Fluid-Derived Exosomal MicroRNA-18b-5p Regulates PTEN-Mediated PI3K/Akt/mTOR Signaling Pathway to Inhibit Polycystic Ovary Syndrome Development. Mol Neurobiol. 2022;59(4):2520-2531.
  • Li H, Yu B, Li J, et al. Identification of differentially expressed microRNAs in the ovary of polycystic ovary syndrome with hyperandrogenism and insulin resistance. Mol Med Rep. 2017;16(1):940-946.
  • Li W, Zhang X, Chen Y, et al. MiR-93-5p and miR-122 as diagnostic biomarkers for polycystic ovary syndrome. Reprod Biol Endocrinol. 2019;17(1):65.
  • Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010;223(1):49-56.
  • Yuan D, Luo J, Sun Y, Hao L, Zheng J, Yang Z. PCOS follicular fluid derived exosomal miR-424-5p induces granulosa cells senescence by targeting CDCA4 expression. Cell Signal. 2021; 85:110030.
  • Li Y, Xiang Y, Song Y, Wan L, Yu G, Tan L. Dysregulated miR-142, -33b and -423 in granulosa cells target TGFBR1 and SMAD7: a possible role in polycystic ovary syndrome. Mol Hum Reprod. 2019;25(10):638-646.
  • Naji M, Nekoonam S, Aleyasin A, Arefian E, Mahdian R, Azizi E, et al. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch Gynecol Obstet. 2018;297:221-231.
  • Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62(7):2278-2286.
  • Sørensen AE, Udesen PB, Wissing ML, Englund ALM, Dalgaard LT. MicroRNAs related to androgen metabolism and polycystic ovary syndrome. Chem Biol Interact. 2016.
  • Sathyapalan T, David R, Gooderham NJ, Atkin SL. Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci Rep. 2015; 5:16890.
  • Eisenberg I, Nahmias N, Novoselsky Persky M, Greenfield C, Goldman-Wohl D, Hurwitz A, et al. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil Steril. 2017;107:269-275.
  • Sørensen AE, Wissing ML, Englund ALM, Dalgaard LT. MicroRNA species in follicular fluid associating with polycystic ovary syndrome and related intermediary phenotypes. J Clin Endocrinol Metab. 2016;101:1579-1589.
  • Xu X, Shen HR, Yu M, Du MR, Li XL. MicroRNA let-7i inhibits granulosa-luteal cell proliferation and oestradiol biosynthesis by directly targeting IMP2. Reprod Biomed Online. 2022;44(5):803-816.
  • Qu B, Zhao Q, Ma Q, Yang T, Li X, Chen Y, et al. Overexpression of miR-144-3p alleviates polycystic ovaries syndrome by targeting expression of HSP-70. Gene Ther. 2022;29(5):217-226.
  • Zhao Y, Pan S, Li Y, Wu X. Exosomal miR-143-3p derived from follicular fluid promotes granulosa cell apoptosis by targeting BMPR1A in polycystic ovary syndrome. Sci Rep. 2022;12(1):4359.
  • Hu M, Gao T, Du Y. MiR-98-3p regulates ovarian granulosa cell proliferation and apoptosis in polycystic ovary syndrome by targeting YY1. Med Mol Morphol. 2022;55(1):47-59.
  • Chen H, Fu Y, Guo Z, Zhou X. MicroRNA-29c-3p participates in insulin function to modulate polycystic ovary syndrome via targeting Forkhead box O 3. Bioengineered. 2022;13(2):4361-4371.
  • Liu G, Liu S, Xing G, Wang F. lncRNA PVT1/MicroRNA-17-5p/PTEN Axis Regulates Secretion of E2 and P4, Proliferation, and Apoptosis of Ovarian Granulosa Cells in PCOS. Mol Ther Nucleic Acids. 2020; 20:205-216.
  • Dehghan Z, Mohammadi-Yeganeh S, Salehi M. MiRNA-155 regulates cumulus cell function, oocyte maturation, and blastocyst formation. Biol Reprod. 2020;103(3):548-559.
  • Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered MicroRNA and Gene Expression in the Follicular Fluid of Women with Polycystic Ovary Syndrome. J Assist Reprod Genet. 2014;31(3):355-362.
  • Hossain MM, Cao M, Wang Q, Kim JY, Schellander K, Tesfaye D, Tsang BK. Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J Ovarian Res. 2013; 6:36.
  • Li D, Xu D, Xu Y, Chen L, Li C, Dai X, et al. MicroRNA-141-3p targets dapk1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct. 2017;35(4):197-201.
  • Cai G, Ma X, Chen B, Huang Y, Liu S, Yang H, Zou W. MicroRNA-145 negatively regulates cell proliferation through targeting IRS1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome. Reprod Sci. 2017; 24:902-910.
  • Xiang Y, Song Y, Li Y, Zhao D, Ma L, Tan L. miR-483 is down-regulated in polycystic ovarian syndrome and inhibits KGN cell proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1). Med Sci Monit. 2016; 22:3383-3393.
  • Huang X, Liu C, Hao C, Tang Q, Liu R, Lin S, et al. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes estradiol secretion by targeting MAP3K8. Reproduction. 2016; 151:643-655.
  • Shi L, Liu S, Zhao W, Shi J. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online. 2015; 31:565-572.
  • Liu X, Ma L, Rao Q, Mao Y, Xin Y, Xu H, et al. MiR-1271 inhibits ovarian cancer growth by targeting cyclin G1. Med Sci Monit. 2015; 21:3152-3158.
  • Karakas SE. New biomarkers for diagnosis and management of polycystic ovary syndrome, Clinica Chimica Acta. 2017; 471: 248-253.
  • Cassar S, Teede HJ, Harrison CL, Joham AE, Moran LJ, Stepto NK. Biomarkers and insulin sensitivity in women with Polycystic Ovary Syndrome: Characteristics and predictive capacity. Clinical endocrinology. 2015; 83(1): 50-58.
  • Jing T, Wu Y, Wan A, Ge C, Chen ZJ, Du Y. Circular RNA as a Novel Regulator and Promising Biomarker in Polycystic Ovary Syndrome. Biomolecules. 2023; 13(7): 1101.
  • Sikiru AB, Adeniran MA, Akinola K, Behera H, Kalaignazhal G, Egena SSA. Unraveling the complexity of the molecular pathways associated with polycystic ovary syndrome (PCOS) and identifying molecular targets for therapeutic development: a review of literature. Middle East Fertility Society Journal. 2023; 28(1): 16.
  • Li PF, Wang F, Kong HJ, Zhao F, Bai AH, Chen XM, Sun YP. Establishment of polycystic ovary syndrome-derived human embryonic stem cell lines. Gynecological Endocrinology. 2012; 28(1): 25-28.
  • Islam H, Masud J, Islam YN, Haque FKM. An update on polycystic ovary syndrome: A review of the current state of knowledge in diagnosis, genetic etiology, and emerging treatment options. Women's Health. 2022; 18: 17455057221117966.

Polikistik Over Sendromlu (PKOS) Kadınlarda Anormal MiRNA Ekspresyonu

Yıl 2023, , 183 - 191, 19.10.2023
https://doi.org/10.55517/mrr.1324616

Öz

Polikistik over sendromu (PCOS), üreme çağındaki kadınların büyük bir kısmını etkileyen, zorlayıcı bir endokrin ve metabolik bozukluktur. Polikistik over görünümü, hiperandrojenizm, kronik anovulasyon, insülin direnci ve obezite gibi bir dizi belirtiyle kendini gösterir. Yıllar süren araştırmalara rağmen, PCOS'nin kesin nedeni hala belirsizdir, ancak son çalışmalar epigenetik mekanizmaların patogenezinde önemli bir rol oynayabileceğini öne sürmüştür. Özellikle mikroRNA'lar (miRNA'lar) ilgi çekicidir, DNA'dan transkript edilen ancak proteinlere çevrilmeyen kısa kodlamayan RNA'lardır. Son araştırmalar, miRNA'ların PCOS'da anormal ifadesinin bulunduğunu ve hastalığın gelişimine ve ilerlemesine katkıda bulunabileceğini göstermiştir. Bu derleme, PCOS'da anormal miRNA ifadesi ile ilgili mevcut bilginin ve zorlukların ayrıntılı bir analizini sunmayı amaçlamaktadır. Bu durumun hedefe yönelik tedavilere ve geliştirilmiş yönetim stratejilerine yönelik potansiyel bir yolunu aydınlatmaktadır. Derleme, miRNA'ların PCOS'daki rolünü araştıran çeşitli çalışmaların bulgularını özetlemektedir. PCOS'da disregüle olduğu bulunan belirli miRNA'ları ve hastalığın patofizyolojisine olan potansiyel etkilerini tartışmaktadır. Derleme ayrıca miRNA'ların incelenmesiyle ilişkili zorlukları vurgulamakta, bunların düzenlemesinin karmaşıklığını ve miRNA profilleme için standartlaştırılmış metodolojilere olan ihtiyacı ele almaktadır. Mevcut kanıtlara dayanarak, miRNA'ların anormal ifadesinin PCOS'nin gelişimine ve ilerlemesine önemli bir katkı sağladığı görülmektedir. Bu disregüle miRNA'ların hedef alınması, PCOS'nin yönetimi için yeni tedavi stratejileri sunabilir. miRNA ile ilişkili biyobelirteçler ve gen terapileri, PKOS tanı ve tedavisinin doğruluğunu ve etkinliğini artırabilir. Bununla birlikte, belirli miRNA'ların işlevsel rollerini ve tanısal veya terapötik hedef olarak potansiyellerini tam olarak anlamak için daha fazla araştırmaya ihtiyaç vardır. Sonuç olarak, bu derleme PCOS'daki miRNA'ların rolüne dair değerli içgörüler sunmakta ve gelecekteki araştırma ve tedavi yaklaşımları için umut verici bir yol belirlemektedir.

Kaynakça

  • March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample was assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–551.
  • 2. Meier RK. Polycystic Ovary Syndrome. Nurs Clin North Am. 2018;53(3):407–420.
  • Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106 (1):6–15.
  • Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev. 2016;37(5):467–520.
  • Escobar-Morreale HF. Polycystic ovary syndrome: definition, etiology, diagnosis, and treatment. Nat Rev Endocrinol. 2018;14(5):270–284.
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–531.
  • Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741.
  • Lin L, Du T, Huang J, Huang LL, Yang DZ. Identification of differentially expressed microRNAs in the ovary of polycystic ovary syndrome with hyperandrogenism and insulin resistance. Chin Med J (Engl). 2015;128(2):169–174.
  • Diamanti-Kandarakis E, Christakou CD, Kandarakis SA. Polycystic ovary syndrome: pathophysiology, molecular aspects, and clinical implications. Expert Rev Mol Med. 2008;10:e3.
  • Ndefo UA, Eaton A, Green MR. Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. P T. 2013;38(6):336–355.
  • Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981-1030.
  • Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565-4592.
  • Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602-1618.
  • Yu Y, Li G, He X, Lin Y, Chen Z, Lin X, Xu H. MicroRNA-21 regulates the cell apoptosis and cell proliferation of polycystic ovary syndrome (PCOS) granulosa cells through target toll-like receptor TLR8. Bioengineered. 2021;12(1):5789-5796.
  • Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068-3079.
  • Mu J, Yu P, Li Q. microRNA-103 Contributes to Progression of Polycystic Ovary Syndrome Through Modulating the IRS1/PI3K/AKT Signal Axis. Arch Med Res. 2021;52(5):494-504.
  • Nanda D, Chandrasekaran SP, Ramachandran V, Kalaivanan K, Carani Venkatraman A. Evaluation of Serum miRNA-24, miRNA-29a, and miRNA-502-3p Expression in PCOS Subjects: Correlation with Biochemical Parameters Related to PCOS and Insulin Resistance. Indian J Clin Biochem. 2020;35(2):169-178.
  • Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of MicroRNAs in Human Follicular Fluid: Characterization of MicroRNAs That Govern Steroidogenesis in Vitro and Are Associated With Polycystic Ovary Syndrome in Vivo. J Clin Endocrinol Metab. 2013;98(7):3068-3079.
  • Butler AE, Ramachandran V, Hayat S, Dargham SR, Cunningham TK, Benurwar M, et al. Expression of microRNA in follicular fluid in women with and without PCOS. Sci Rep. 2019;9(1):16306.
  • Chen B, Xu P, Wang J, Zhang C. The role of miRNA in polycystic ovary syndrome (PCOS). Gene. 2019; 706:91-96.
  • Chen L, Kong C. LINC00173 regulates polycystic ovarian syndrome progression by promoting apoptosis and repressing proliferation in ovarian granulosa cells via the microRNA-124-3p (miR-124-3p)/jagged canonical Notch ligand 1 (JAG1) pathway. Bioengineered. 2022;13(4):10373-10385.
  • Zhou Z, Tu Z, Zhang J, Tan C, Shen X, Wan B, et al. Follicular Fluid-Derived Exosomal MicroRNA-18b-5p Regulates PTEN-Mediated PI3K/Akt/mTOR Signaling Pathway to Inhibit Polycystic Ovary Syndrome Development. Mol Neurobiol. 2022;59(4):2520-2531.
  • Li H, Yu B, Li J, et al. Identification of differentially expressed microRNAs in the ovary of polycystic ovary syndrome with hyperandrogenism and insulin resistance. Mol Med Rep. 2017;16(1):940-946.
  • Li W, Zhang X, Chen Y, et al. MiR-93-5p and miR-122 as diagnostic biomarkers for polycystic ovary syndrome. Reprod Biol Endocrinol. 2019;17(1):65.
  • Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010;223(1):49-56.
  • Yuan D, Luo J, Sun Y, Hao L, Zheng J, Yang Z. PCOS follicular fluid derived exosomal miR-424-5p induces granulosa cells senescence by targeting CDCA4 expression. Cell Signal. 2021; 85:110030.
  • Li Y, Xiang Y, Song Y, Wan L, Yu G, Tan L. Dysregulated miR-142, -33b and -423 in granulosa cells target TGFBR1 and SMAD7: a possible role in polycystic ovary syndrome. Mol Hum Reprod. 2019;25(10):638-646.
  • Naji M, Nekoonam S, Aleyasin A, Arefian E, Mahdian R, Azizi E, et al. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch Gynecol Obstet. 2018;297:221-231.
  • Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62(7):2278-2286.
  • Sørensen AE, Udesen PB, Wissing ML, Englund ALM, Dalgaard LT. MicroRNAs related to androgen metabolism and polycystic ovary syndrome. Chem Biol Interact. 2016.
  • Sathyapalan T, David R, Gooderham NJ, Atkin SL. Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci Rep. 2015; 5:16890.
  • Eisenberg I, Nahmias N, Novoselsky Persky M, Greenfield C, Goldman-Wohl D, Hurwitz A, et al. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil Steril. 2017;107:269-275.
  • Sørensen AE, Wissing ML, Englund ALM, Dalgaard LT. MicroRNA species in follicular fluid associating with polycystic ovary syndrome and related intermediary phenotypes. J Clin Endocrinol Metab. 2016;101:1579-1589.
  • Xu X, Shen HR, Yu M, Du MR, Li XL. MicroRNA let-7i inhibits granulosa-luteal cell proliferation and oestradiol biosynthesis by directly targeting IMP2. Reprod Biomed Online. 2022;44(5):803-816.
  • Qu B, Zhao Q, Ma Q, Yang T, Li X, Chen Y, et al. Overexpression of miR-144-3p alleviates polycystic ovaries syndrome by targeting expression of HSP-70. Gene Ther. 2022;29(5):217-226.
  • Zhao Y, Pan S, Li Y, Wu X. Exosomal miR-143-3p derived from follicular fluid promotes granulosa cell apoptosis by targeting BMPR1A in polycystic ovary syndrome. Sci Rep. 2022;12(1):4359.
  • Hu M, Gao T, Du Y. MiR-98-3p regulates ovarian granulosa cell proliferation and apoptosis in polycystic ovary syndrome by targeting YY1. Med Mol Morphol. 2022;55(1):47-59.
  • Chen H, Fu Y, Guo Z, Zhou X. MicroRNA-29c-3p participates in insulin function to modulate polycystic ovary syndrome via targeting Forkhead box O 3. Bioengineered. 2022;13(2):4361-4371.
  • Liu G, Liu S, Xing G, Wang F. lncRNA PVT1/MicroRNA-17-5p/PTEN Axis Regulates Secretion of E2 and P4, Proliferation, and Apoptosis of Ovarian Granulosa Cells in PCOS. Mol Ther Nucleic Acids. 2020; 20:205-216.
  • Dehghan Z, Mohammadi-Yeganeh S, Salehi M. MiRNA-155 regulates cumulus cell function, oocyte maturation, and blastocyst formation. Biol Reprod. 2020;103(3):548-559.
  • Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered MicroRNA and Gene Expression in the Follicular Fluid of Women with Polycystic Ovary Syndrome. J Assist Reprod Genet. 2014;31(3):355-362.
  • Hossain MM, Cao M, Wang Q, Kim JY, Schellander K, Tesfaye D, Tsang BK. Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J Ovarian Res. 2013; 6:36.
  • Li D, Xu D, Xu Y, Chen L, Li C, Dai X, et al. MicroRNA-141-3p targets dapk1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct. 2017;35(4):197-201.
  • Cai G, Ma X, Chen B, Huang Y, Liu S, Yang H, Zou W. MicroRNA-145 negatively regulates cell proliferation through targeting IRS1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome. Reprod Sci. 2017; 24:902-910.
  • Xiang Y, Song Y, Li Y, Zhao D, Ma L, Tan L. miR-483 is down-regulated in polycystic ovarian syndrome and inhibits KGN cell proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1). Med Sci Monit. 2016; 22:3383-3393.
  • Huang X, Liu C, Hao C, Tang Q, Liu R, Lin S, et al. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes estradiol secretion by targeting MAP3K8. Reproduction. 2016; 151:643-655.
  • Shi L, Liu S, Zhao W, Shi J. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online. 2015; 31:565-572.
  • Liu X, Ma L, Rao Q, Mao Y, Xin Y, Xu H, et al. MiR-1271 inhibits ovarian cancer growth by targeting cyclin G1. Med Sci Monit. 2015; 21:3152-3158.
  • Karakas SE. New biomarkers for diagnosis and management of polycystic ovary syndrome, Clinica Chimica Acta. 2017; 471: 248-253.
  • Cassar S, Teede HJ, Harrison CL, Joham AE, Moran LJ, Stepto NK. Biomarkers and insulin sensitivity in women with Polycystic Ovary Syndrome: Characteristics and predictive capacity. Clinical endocrinology. 2015; 83(1): 50-58.
  • Jing T, Wu Y, Wan A, Ge C, Chen ZJ, Du Y. Circular RNA as a Novel Regulator and Promising Biomarker in Polycystic Ovary Syndrome. Biomolecules. 2023; 13(7): 1101.
  • Sikiru AB, Adeniran MA, Akinola K, Behera H, Kalaignazhal G, Egena SSA. Unraveling the complexity of the molecular pathways associated with polycystic ovary syndrome (PCOS) and identifying molecular targets for therapeutic development: a review of literature. Middle East Fertility Society Journal. 2023; 28(1): 16.
  • Li PF, Wang F, Kong HJ, Zhao F, Bai AH, Chen XM, Sun YP. Establishment of polycystic ovary syndrome-derived human embryonic stem cell lines. Gynecological Endocrinology. 2012; 28(1): 25-28.
  • Islam H, Masud J, Islam YN, Haque FKM. An update on polycystic ovary syndrome: A review of the current state of knowledge in diagnosis, genetic etiology, and emerging treatment options. Women's Health. 2022; 18: 17455057221117966.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Üreme
Bölüm Derleme
Yazarlar

Sude Topkaraoğlu 0000-0002-7680-7156

Gulam Hekimoğlu 0000-0002-5027-6756

Yayımlanma Tarihi 19 Ekim 2023
Gönderilme Tarihi 8 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

Vancouver Topkaraoğlu S, Hekimoğlu G. Abnormal Expression of miRNA in Women with Polycystic Ovary Syndrome (PCOS). MRR. 2023;6(3):183-91.