In Vitro koşullarda farklı güç ve cinsteki aydınlatma kaynaklarının mononükleer hücre DNA hasarı üzerine etkisinin araştırılması
Yıl 2025,
Cilt: 8 Sayı: 1, 26 - 35, 24.03.2025
İbrahim Halil Dikici
,
Sahre G. Özpolat
,
Hakim Çelik
,
Abdurrahim Koçyiğit
Öz
Amaç: Bu çalışmanın amacı, günlük yapay ışık kaynaklarının insan mononükleer lenfosit hücrelerinde DNA hasarı ve oksidatif stres parametreleri üzerindeki etkilerini araştırmaktır. Farklı aydınlatma kaynaklarının hücresel DNA bütünlüğü ve oksidatif stres düzeylerine yönelik potansiyel DNA hasarı etkileri kapsamlı bir şekilde değerlendirmektir. Yöntem: İzole edilmiş insan mononükleer lenfosit hücreleri çeşitli yoğunluklarda yapay ışık kaynaklarına maruz bırakılmıştır. DNA hasarının analizi için alkalin tek hücreli jel elektroforezi (comet assay) yöntemi kullanılmıştır. Hücrelerin oksidatif durumları ise Erel yöntemiyle değerlendirilmiştir. Bulgular: En fazla DNA hasarının, beyaz ve sarı kompakt floresan lambalarda saptanmıştır. En az DNA hasarının ise sarı akkor ışık kaynaklarında meydana geldiği belirlenmiştir. Ayrıca, 100 watt'lık floresan ışık kaynaklarının en fazla DNA hasarına neden olduğu saptanmıştır. En az hasar ise 20 watt'lık lambalarda gözlemlenmiştir. Işığa maruz kalma süresi arttıkça oksidatif stres indeksinin anlamlı derecede yükseldiği tespit edilmiştir. Sonuç: Çalışmamız, yapay ışık kaynaklarının hem direk hem de oksidatif stres düzeylerini artırarak DNA hasarına neden olabileceğini ortaya koymuştur. Bulgularımız, farklı yapay ışık kaynaklarının ve maruziyet sürelerinin hücresel genotoksisite ve oksidatif stres üzerinde belirgin etkiler yarattığını göstermektedir. Bu sonuçlar, yapay aydınlatmanın potansiyel biyolojik risklerini göstermektedir.
Teşekkür
Yazımızın tarafınızca incelenip derginizde yayınlanması bizi onurlandıracaktır. Yazımızın konuya ilgi duyan ve sağlık profesyonellerine katkı sağlayacağını düşünmekteyiz. Ayrıca yazımızın toplum sağlığı için oldukça önemli olduğunu düşünmekteyiz.
Saygılarımla
Uzm Dr İbrahim Halil DİKİCİ
Kaynakça
- Carusillo A, Mussolino C. DNA Damage: FromThreattoTreatment. Cells. 2020 Jul; 9(7): 1665.
- Sofińska K, Wilkosz N, Szymoński M, Lipiec E. Molecular Spectroscopic Markers of DNA Damage. Molecules. 2020 Jan 28;25(3):561.
- Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biology. 2013 Feb 1;5(2):a012559.
- Banaś AK, Zgłobicki P, Kowalska E, Bażant A, Dziga D, Strzałka W. All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. Genes (Basel). 2020 Nov 4;11(11):1304.
- Basu AK. DNA Damage, Mutagenesis and Cancer. International Journal Molecular Science. 2018 Mar;19(4):970.
- Sánchez-Rodríguez MA, Mendoza-Núñez VM. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxidative Medicine Cellular Longevity. 2019 Nov 25;2019:4128152.
- Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research. 1988 Mar;175:184–191.
- Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutation Research. 1992 Sep; 275(3-6): 331-342.
- Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry. 2005 Dec;38(12):1103-11.
- Robinson KS, Traynor NJ, Moseley H, Ferguson J, Woods JA.Cyclobutane pyrimidine dimers are photo sensitised by carprofen plus UVA in human HaCaTcells. Toxicology In Vitro. 2010 Jun; 24(4): 1126-1132.
- Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis. 1997 Apr; 18(4): 811-816.
- Pflaum M, Kielbassa C, Garmyn M, Epe B. Oxidative DNA damage induced by visible light in mammaliancells: extent, inhibition by antioxidants and genotoxic effects. Mutation Research. 1998 Aug; 408(2): 137-146.
- Botta C, Di Giorgio C, Sabatier AS, De Méo M. Effects of UVA and visible light on the photogenotoxicity of benzo[a]pyrene and pyrene. Environmental Toxicology. 2009 Oct;24(5):492-505.
- Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology. 2003 Jul 15;189(1-2):21-39.
- Guerra KC, Zafar N, Crane JS. Skin Cancer Prevention. In: StatPearls [Internet] 2023 Aug 8. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 30137812. https://www.ncbi.nlm.nih.gov/books/NBK519527/?report=reader
- Pfeifer GP. Mechanisms of UV-induced mutations and skin cancer. Genome Instability Disease. 2020 May;1(3):99-113.
- Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, et al. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. Journal of Advenced Research. 2021 Jun 16;36:223-247.
- Godley, B. F., Shamsi, F. A., Liang, F. Q., Jarrett, S. G., Davies, S., & Boulton, M. Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells: Journal of Biological Chemistry. 2005 Jun; 280(22):061 – 066.
Effect of Artificial Light Sources on DNA Damage in Human Mononuclear Lymphocyte Cells Under In Vitro Conditions
Yıl 2025,
Cilt: 8 Sayı: 1, 26 - 35, 24.03.2025
İbrahim Halil Dikici
,
Sahre G. Özpolat
,
Hakim Çelik
,
Abdurrahim Koçyiğit
Öz
Aim: This study aimed to evaluate the effects of commonly used artificial light sources on DNA damage and oxidative stress parameters in human mononuclear lymphocyte cells. The potential effects of different lighting sources on cellular DNA integrity and oxidative stress levels were comprehensively evaluated. Methods: Isolated human mononuclear lymphocyte cells were exposed to artificial light sources at varying intensities and durations. DNA damage was analyzed using the alkaline single-cell gel electrophoresis (comet assay) method. The oxidative status of the cells was assessed using Erel’s method. Results: The highest DNA damage was observed with white and yellow compact fluorescent lamps, whereas the least damage occurred with yellow incandescent light sources. Additionally, 100-watt fluorescent lamps caused the most DNA damage, while the least damage was detected with 20-watt lamps. Oxidative stress index levels significantly increased with prolonged exposure. Conclusion: Our findings indicate that artificial light sources can induce DNA damage by increasing both direct and oxidative stress. Different light types and exposure durations significantly affect cellular genotoxicity and oxidative stress levels. These results provide an important insight into the potential biological risks associated with artificial lighting.
Etik Beyan
This study was approved by the Clinical Research Ethics Committee of Harran University (HRÜ23.06.14).
Kaynakça
- Carusillo A, Mussolino C. DNA Damage: FromThreattoTreatment. Cells. 2020 Jul; 9(7): 1665.
- Sofińska K, Wilkosz N, Szymoński M, Lipiec E. Molecular Spectroscopic Markers of DNA Damage. Molecules. 2020 Jan 28;25(3):561.
- Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biology. 2013 Feb 1;5(2):a012559.
- Banaś AK, Zgłobicki P, Kowalska E, Bażant A, Dziga D, Strzałka W. All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. Genes (Basel). 2020 Nov 4;11(11):1304.
- Basu AK. DNA Damage, Mutagenesis and Cancer. International Journal Molecular Science. 2018 Mar;19(4):970.
- Sánchez-Rodríguez MA, Mendoza-Núñez VM. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxidative Medicine Cellular Longevity. 2019 Nov 25;2019:4128152.
- Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research. 1988 Mar;175:184–191.
- Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutation Research. 1992 Sep; 275(3-6): 331-342.
- Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry. 2005 Dec;38(12):1103-11.
- Robinson KS, Traynor NJ, Moseley H, Ferguson J, Woods JA.Cyclobutane pyrimidine dimers are photo sensitised by carprofen plus UVA in human HaCaTcells. Toxicology In Vitro. 2010 Jun; 24(4): 1126-1132.
- Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis. 1997 Apr; 18(4): 811-816.
- Pflaum M, Kielbassa C, Garmyn M, Epe B. Oxidative DNA damage induced by visible light in mammaliancells: extent, inhibition by antioxidants and genotoxic effects. Mutation Research. 1998 Aug; 408(2): 137-146.
- Botta C, Di Giorgio C, Sabatier AS, De Méo M. Effects of UVA and visible light on the photogenotoxicity of benzo[a]pyrene and pyrene. Environmental Toxicology. 2009 Oct;24(5):492-505.
- Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology. 2003 Jul 15;189(1-2):21-39.
- Guerra KC, Zafar N, Crane JS. Skin Cancer Prevention. In: StatPearls [Internet] 2023 Aug 8. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 30137812. https://www.ncbi.nlm.nih.gov/books/NBK519527/?report=reader
- Pfeifer GP. Mechanisms of UV-induced mutations and skin cancer. Genome Instability Disease. 2020 May;1(3):99-113.
- Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, et al. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. Journal of Advenced Research. 2021 Jun 16;36:223-247.
- Godley, B. F., Shamsi, F. A., Liang, F. Q., Jarrett, S. G., Davies, S., & Boulton, M. Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells: Journal of Biological Chemistry. 2005 Jun; 280(22):061 – 066.