Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar

Yıl 2025, Cilt: 8 Sayı: 8, 26 - 40, 15.12.2025

Öz

Bu çalışma, doğal hidrojenin oluşumu, rezervuar özellikleri ve karasal doğal H2 arama tekniklerini ele almaktadır. Denizel ve jeotermal ortamlarda aramacılık potansiyel taşısa da, yüksek maliyetli
deniz tabanı operasyonları ve mevcut teknolojik kısıtlar nedeniyle ekonomik değildir. Türkiye’nin doğal hidrojen potansiyeli ve izlenmesi gereken yol haritası da incelenmektedir. Doğal H2 keşifleri genellikle rastlantısaldır ve çoğu hidrokarbon aramaları sırasında tespit edilmiştir. Arama potansiyelindeki belirsizlikleri azaltmak için toprak gaz analizleri, yüzey indikatörleri ve saha çalışmaları kullanılabilir. Ancak ekonomik potansiyelin belirlenmesi için kapsamlı bir model gereklidir. Bu model dört aşamadan oluşur: (i) havza ölçeğinde jeolojik ve jeofizik verilerle öncelikli alanların seçilmesi, (ii) yatırım öncesi lojistik, altyapı ve maliyet değerlendirmeleri, (iii) saha ölçeğinde jeolojik, jeofizik ve jeokimyasal ayrıntılı çalışmalarla hedeflerin daraltılması, (iv) keşif sondajı ve testlerle H2 varlığının ve üretilebilirliğinin doğrulanması. Türkiye, özellikle ofiyolit kuşaklarındaki serpantinleşmiş ultrabazik kayaçlar, bantlı demir formasyonları ve uranyum– toryumca zengin granitik birimler ile umut vadeden bir konumdadır. Dünya genelinde doğal H2 zenginleşmeleri Mali, ABD, Avustralya, Brezilya, Rusya, Umman ve İspanya’da rapor edilmiştir.

Etik Beyan

Maden Tetkik ve Arama Genel Müdürlüğü’ne, bizlere multidisipliner çalışma fırsatı sunduğu için teşekkür ederiz.

Teşekkür

Maden Tetkik ve Arama Genel Müdürlüğü’ne, bizlere multidisipliner çalışma fırsatı sunduğu için teşekkür ederiz.

Kaynakça

  • Abrajano, T. A., Sturchio, N. C., Bohlke, J. K., Lyon,G. L., Poreda, R. J., Stevens, C. M. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin?, Chemical Geology 71(1–3), 211–222. https://doi. org/10.1016/0009-2541(88)90116-7
  • Boreham, C. J., Edwards, D. S., Czado, K., Rollet, N., Wang, L., van der Wielen, S., Champion, D., Blewett, R., Feitz, A., Henson, P. A. 2021. Hydrogen in Australian natural gas: Occurrences, sources and resources, The Australian Energy Producers Journal 61(1), 163. https://doi.org/10.1071/ aj20044
  • Chavagnac, V., Monnin, C., Ceuleneer, G., Boulart, C., Hoareau, G. 2013. Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites, Geochemistry, Geophysics, Geosystems 14(7), 2496–2522. https://doi.org/10.1002/ggge.20147
  • Christensen, N. I. 2004. Serpentinites, peridotites, and seismology, International Geology Review 46(9), 795–816. https://doi.org/10.2747/0020- 6814.46.9.795
  • Çelik, D., Yıldız, M. 2017. Investigation of hydrogen production methods in accordance with green chemistry principles. International Journal of Hydrogen Energy 42(36), 23395–23401. https:// doi.org/10.1016/j.ijhydene.2017.03.104
  • Davies, K., Esteban, L., Keshavarz, A., Iglauer, S. 2024. Advancing natural hydrogen exploration: Headspace gas analysis in water-logged environments. Energy and Fuels 38(3), pp.2010- 2017.
  • Deville, E., Prinzhofer, A. 2016. The origin of N2-H2-CH4- rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia, Chemical Geology 440, 139–147. https://doi.org/10.1016/j.chemgeo.2016.06.011
  • Diallo, A., Cissé, C. S. T., Lemay, J., Brière, D. J. 2022. La découverte de l’hydrogène naturel par Hydroma, un « Game Changer » pour la transition énergétique, Annales Des Mines - Réalités Industrielles 2(4), 154–160. https://doi. org/10.3917/rindu1.224.0154
  • Etiope, G. 2017. Abiotic Methane in Continental Serpentinization Sites: An Overview, Procedia Earth and Planetary Science 17, 9–12. https://doi. org/10.1016/j.proeps.2016.12.006
  • Etiope, G. 2023. Massive release of natural hydrogen from a geological seep (Chimaera, Turkey): Gas advection as a proxy of subsurface gas migration and pressurised accumulations. International Journal of Hydrogen Energy 48(25), pp.9172-9184. https://doi.org/10.1016/j. ijhydene.2022.12.025
  • Etiope, G., Orbán, A. 2025. Surface gas geochemical exploration for natural hydrogen: Uncertainties and holistic interpretation. Natural Hydrogen Systems: Properties, Occurrences, Generation Mechanisms, Exploration, Storage and Transportation.
  • Etiope, G., Schoell, M., Hosgörmez, H. 2011. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars, Earth and Planetary Science Letters 310(1–2), 96–104. https://doi. org/10.1016/j.epsl.2011.08.001
  • Etiope, G., Vadillo, I., Whiticar, M. J., Marques, J. M., Carreira, P. M., Tiago, I., Benavente, J., Jiménez, P., Urresti, B. 2016. Abiotic methane seepage in the Ronda peridotite massif, southern Spain, Applied Geochemistry 66, 101–113. https://doi. org/10.1016/j.apgeochem.2015.12.001
  • Frery, E., Langhi, L., Maison, M., Moretti, I. 2021. Natural hydrogen seeps identified in the North Perth Basin, Western Australia, International Journal of Hydrogen Energy 46(61), 31158–31173. https:// doi.org/10.1016/j.ijhydene.2021.07.023
  • Geymond, U., Briolet, T., Combaudon, V., Sissmann, O., Martinez, I., Duttine, M., Moretti, I. 2023. Reassessing the role of magnetite during natural hydrogen generation, Frontiers in Earth Science 11, 1169356. https://doi.org/10.3389/ feart.2023.1169356
  • Geymond, U., Ramanaidou, E., Lévy, D., Ouaya, A., Moretti, I. 2022. Can Weathering of Banded Iron Formations Generate Natural Hydrogen? Evidence from Australia, Brazil and South Africa, Minerals 12(2). https://doi.org/10.3390/ min12020163
  • Guélard, J., Beaumont, V., Rouchon, V., Guyot, F., Pillot, D., Jézéquel, D., Ader, M., Newell, K. D., Deville, E. 2017. Natural H2 in Kansas: Deep or shallow origin, Geochemistry, Geophysics, Geosystems 18(5), 1841–1865. https://doi. org/10.1002/2016GC006544
  • Halford, D. T., Karolytė, R., Barry, P. H., Whyte, C. J., Darrah, T. H., Cuzella, J. J., Sonnenberg, S. A., Ballentine, C. J. 2022. High helium reservoirs in the Four Corners area of the Colorado Plateau, USA, Chemical Geology 596. https://doi. org/10.1016/j.chemgeo.2022.120790
  • Han, S., Tang, Z., Wang, C., Horsfield, B., Wang, T., Mahlstedt, N. 2022. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, Northeast China: New insights into deep Earth exploration. Science Bulletin 67(10), 1003-1006. https://doi.org/10.1016/j. scib.2022.02.008
  • Higgins, P.M., Song, M., Warr, O., Sherwood Lollar, B. 2025. Natural H2 and sulfate production via radiolysis in low porosity and permeability crystalline rocks. Journal of Geophysical Research: Biogeosciences 130(6), p.e2025JG008863. https://doi.org/10.1029/2025JG008863
  • Hirose, T., Kawagucci, S., Suzuki, K. 2011. Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere, Geophysical Research Letters 38(17), 17303. https://doi.org/10.1029/2011GL048850
  • Horsfield, B., Mahlstedt, N., Weniger, P., Misch, D., Vranjes- Wessely, S., Han, S., Wang, C. 2022. Molecular hydrogen from organic sources in the deep Songliao Basin, P.R. China, International Journal of Hydrogen Energy 47(38), 16750–16774. https://doi.org/10.1016/j.ijhydene.2022.02.208
  • Jackson, O., Lawrence, S.R., Hutchinson, I.P., Stocks, A.E., Barnicoat, A.C., Powney, M. 2024. Natural hydrogen: Sources, systems and exploration plays. Geoenergy 2(1), pp.geoenergy2024-002. https://doi.org/10.1144/geoenergy2024-002
  • Johnsgard, S.K. 1988. The fracture pattern of north-central Kansas and its relation to hydrogen soil gas anomalies over the midcontinent rift system. University of Kansas, Kansas.
  • Karolytė, R., Warr, O., van Heerden, E., Flude, S., de Lange, F., Webb, S., Ballentine, C. J., Sherwood Lollar, B. 2022. The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa, Chemical Geology 595. https://doi.org/10.1016/j.chemgeo.2022.120788
  • Klein, F., Bach, W., McCollom, T. M. 2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks, Lithos 178, 55–69. https://doi.org/10.1016/j. lithos.2013.03.008
  • Klein, F., Marschall, H. R., Bowring, S. A., Humphris, S. E., Horning, G. 2017. Mid-ocean ridge serpentinite in the Puerto Rico Trench: From seafloor spreading to subduction, Journal of Petrology 58(9), 1729– 1754. https://doi.org/10.1093/petrology/egx071
  • Larin, N., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A., Larin, V. N. 2015. Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia, Natural Resources Research 24(3), 369– 383. https://doi.org/10.1007/s11053-014-9257-5
  • Lefeuvre, N., Truche, L., Donzé, F. V., Ducoux, M., Barré, G., Fakoury, R. A., Calassou, S., Gaucher, E. C. 2021. Native H2 Exploration in the Western Pyrenean Foothills, Geochemistry, Geophysics, Geosystems 22(8). https://doi.org/10.1029/2021GC009917
  • Leila, M., Loiseau, K., Moretti, I. 2022. Controlsongeneration and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia, Marine and Petroleum Geology 140. https://doi. org/10.1016/j.marpetgeo.2022.105643
  • Lévy, D., Roche, V., Pasquet, G., Combaudon, V., Geymond, U., Loiseau, K., Moretti, I. 2023. Natural H2 exploration: tools and workflows to characterize a play, Science and Technology for Energy Transition 78, 27.
  • MacLeod, I. N., Ellis, R. G. 2013. Magnetic Vector Inversion, a simple approach to the challenge of varying direction of rock magnetization. A Forum on the Application of Remanent Magnetisation and Self-Demagnetisation Estimation to Mineral Exploration. 23rd ASEG Conference and Exhibition, 11-14 Ağustos 2013, Melbourne.
  • Mahlstedt, N., Horsfield, B., Weniger, P., Misch, D., Shi, X., Noah, M., Boreham, C. 2022. Molecular hydrogen from organic sources in geological systems, Journal of Natural Gas Science and Engineering 105. https://doi.org/10.1016/j.jngse.2022.104704
  • Mével, C. 2003. Serpentinisation des péridotites abysales aux dorsales océaniques, Geoscience 335 (10–11), 825–852. https://doi.org/10.1016/j. crte.2003.08.006
  • Moretti, I., Brouilly, E., Loiseau, K., Prinzhofer, A., Deville,E. 2021a. Hydrogen emanations in intracratonic areas: New guide lines for early exploration basin screening, Geosciences (Switzerland) 11(3). https://doi.org/10.3390/geosciences11030145
  • Moretti, I., Geymond, U., Pasquet, G., Aimar, L., Rabaute,A. 2022. Natural hydrogen emanations in Namibia: Field acquisition and vegetation indexes from multispectral satellite image analysis, International Journal of Hydrogen Energy 47(84), 35588–35607. https://doi.org/10.1016/j. ijhydene.2022.08.135
  • Moretti, I., Prinzhofer, A., Françolin, J., Pacheco, C., Rosanne, M., Rupin, F., Mertens, J. 2021b. Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions, International Journal of Hydrogen Energy 46(5), 3615–3628. https://doi. org/10.1016/j.ijhydene.2020.11.026
  • Murray, J., Clément, A., Fritz, B., Schmittbuhl, J., Bordmann, V., Fleury, J. M. 2020. Abiotic hydrogen generation from biotite-rich granite: A case study of the Soultz-sous-Forêts geothermal site, France, Applied Geochemistry 119. https:// doi.org/10.1016/j.apgeochem.2020.104631
  • Neal, C., Stanger, G. 1983. Hydrogen generation from mantle source rocks in Oman, Earth and Planetary Science Letters 66(C), 315–320. https://doi. org/10.1016/0012-821X(83)90144-9
  • Oufi, O., Cannat, M., Horen, H. 2002. Magnetic properties of variably serpentinized abyssal peridotites, Journal of Geophysical Research: Solid Earth 107(B5). https://doi.org/10.1029/2001jb000549
  • Özsöz, İ. 2021. Ilk_Inv: A Matlab Based Algorithm for Rapid Computation of Pseudo-3D Density Contrast Distribution by using Bouguer Gravity Data, Bulletin Of The Mineral Research and Exploration 166(166), 1–36. https://doi. org/10.19111/bulletinofmre.959011
  • Özsöz, İ., Pamukçu, A. 2022. Interpretation of the magnetic anomalies over the Mid-Atlantic Ocean Ridge using Swarm-A satellite, Geofizika 39(1), 1–23. https://doi.org/10.15233/gfz.2022.39.3
  • Özsöz, İ., Toker, C. E. 2022. Interpretation of satellite gravity anomalies with pseudo-depth slicing method filter in Turkey, Bulletin Of The Mineral Research and Exploration 1–39. https://doi.org/10.19111/ bulletinofmre.974936
  • Park, M., Choi, H., Choi, H., Lee, C., Jung, S.P. 2024. Natural Hydrogen, the Ultimate Green Energy: Current Status and Prospects. J Korean Soc Environ Eng 46(9), 485-497. https://doi.org/10.4491/ KSEE.2024.46.9.485
  • Pasquet, G., Hassan, R. H., Sissmann, O., Varet, J., Moretti, I. 2022. An Attempt to Study Natural H2 Resources across an Oceanic Ridge Penetrating a Continent: The Asal–Ghoubbet Rift (Republic of Djibouti), Geosciences (Switzerland) 12(1), 16. https://doi. org/10.3390/geosciences12010016
  • Patonia, A., Lambert, M., Lin, N., Shuster, M., Austin, B.E.G.U. 2024. Natural (geologic) hydrogen and its potential role in a net-zero carbon future: Is all that glitters gold. Oxford Institute for Energy Studies.
  • Pedrera, A., García-Senz, J., Ayala, C., Ruiz-Constán, A., Rodríguez-Fernández, L. R., Robador, A., González Menéndez, L. 2017. Reconstruction of the Exhumed Mantle Across the North Iberian Margin by Crustal-Scale 3-D Gravity Inversion and Geological Cross Section, Tectonics 36(12), 3155–3177. https://doi. org/10.1002/2017TC004716
  • Pedreira, D., Pulgar, J. A., Gallart, J., Torné, M. 2007. Three- dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains, Journal of Geophysical Research: Solid Earth 112(12). https://doi.org/10.1029/2007JB005021
  • Prinzhofer, A., Moretti, I., Françolin, J., Pacheco, C., D’Agostino, A., Werly, J., Rupin, F. 2019. Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2 -emitting structure, International Journal of Hydrogen Energy 44(12), 5676–5685. https://doi. org/10.1016/j.ijhydene.2019.01.119
  • Prinzhofer, A., Tahara Cissé, C. S., Diallo, A. B. 2018. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali), International Journal of Hydrogen Energy 43(42), 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193
  • Proskurowski, G., Lilley, M. D., Kelley, D. S., Olson, E.J. 2006. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer, Chemical Geology 229(4), 331–343. https://doi. org/10.1016/j.chemgeo.2005.11.005
  • Randazzo, P., Caracausi, A., Aiuppa, A., Cardellini, C., Chiodini, G., D’Alessandro, W., Li Vigni, L., Papic, P., Marinkovic, G., Ionescu, A. 2021. Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia, Geochemistry, Geophysics, Geosystems 22(11). https://doi. org/10.1029/2021GC010017
  • Smith, N. J. P., Shepherd, T. J., Styles, M. T., Williams,G. M. 2005. Hydrogen exploration: A review of global hydrogen accumulations and implications for prospective areas in NW Europe, Petroleum Geology Conference Proceedings 6(0), 349–358. https://doi.org/10.1144/0060349
  • Suzuki, N., Saito, H., Hoshino, T. 2017. Hydrogen gas of organic origin in shales and metapelites, International Journal of Coal Geology 173, 227– 236. https://doi.org/10.1016/j.coal.2017.02.014
  • Toft, P. B., Arkani-Hamed, J., Haggerty, S. E. 1990. The effects of serpentinization on density and magnetic susceptibility: A petrophysical model, Physics of the Earth and Planetary Interiors 65(1–2), 137–157. https://doi.org/10.1016/0031-9201(90)90082-9
  • Vacher, P., Souriau, A. 2001. A three-dimensional model of the Pyrenen deep structure based on gravity modelling, seismic images and petrological constrainst, Geophysical Journal International 145(2), 460–470. https://doi.org/10.1046/j.0956-540X.2001.01393.x
  • Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., Pillot, D., Arcilla, C., Prinzhofer,A. 2018. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures, Geochimica et Cosmochimica Acta 223, 437–461. https://doi. org/10.1016/j.gca.2017.12.018
  • Vidavskiy, V., Rezaee, R., Larin, N., Dorrington, R., Spivey, M., Vidavskiy, V. 2024. Natural Hydrogen in North Perth Basin, WA Australia: Detection in Soil Gas for Early Exploration. https://doi. org/10.20944/preprints202404.0532.v1
  • Wang, Y., Chevrot, S., Monteiller, V., Komatitsch, D., Mouthereau, F., Manatschal, G., Sylvander, M., Diaz, J., Ruiz, M., Grimaud, F., Benahmed, S., Pauchet, H., Martin, R. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves, Geology 44(6), 475–478. https://doi.org/10.1130/G37812.1
  • Wang, L., Jin, Z., Chen, X., Su, Y., Huang, X. 2023. The Origin and Occurrence of Natural Hydrogen. Energies 16(5), 2400).
  • Zgonnik, V. 2020. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth- Science Reviews 203.
  • Zgonnik, V., Beaumont, V., Deville, E., Larin, N., Pillot, D., Farrell, K. M. 2015. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA), Progress in Earth and Planetary Science 2(1). https://doi.org/10.1186/s40645-015-0062-5
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

İlkin Özsöz 0000-0001-5907-4176

Ferhat Karaca 0009-0008-5351-8547

Pir Çağatay Kartal Bu kişi benim 0000-0003-0627-6799

Mustafa Batuhan Ertekin Bu kişi benim 0000-0001-9770-7157

Zeynep Önal Bu kişi benim

Özge Ahıpaşaoğlu Bu kişi benim

Aslıhan Yılmaz Bu kişi benim

Gönderilme Tarihi 10 Mart 2025
Kabul Tarihi 6 Eylül 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 8

Kaynak Göster

APA Özsöz, İ., Karaca, F., Kartal, P. Ç., … Ertekin, M. B. (2025). Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar. MTA Yerbilimleri ve Madencilik Dergisi, 8(8), 26-40.
AMA Özsöz İ, Karaca F, Kartal PÇ, vd. Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar. MTA Yer. Mad. Aralık 2025;8(8):26-40.
Chicago Özsöz, İlkin, Ferhat Karaca, Pir Çağatay Kartal, Mustafa Batuhan Ertekin, Zeynep Önal, Özge Ahıpaşaoğlu, ve Aslıhan Yılmaz. “Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar”. MTA Yerbilimleri ve Madencilik Dergisi 8, sy. 8 (Aralık 2025): 26-40.
EndNote Özsöz İ, Karaca F, Kartal PÇ, Ertekin MB, Önal Z, Ahıpaşaoğlu Ö, Yılmaz A (01 Aralık 2025) Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar. MTA Yerbilimleri ve Madencilik Dergisi 8 8 26–40.
IEEE İ. Özsöz, F. Karaca, P. Ç. Kartal, M. B. Ertekin, Z. Önal, Ö. Ahıpaşaoğlu, ve A. Yılmaz, “Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar”, MTA Yer. Mad., c. 8, sy. 8, ss. 26–40, 2025.
ISNAD Özsöz, İlkin vd. “Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar”. MTA Yerbilimleri ve Madencilik Dergisi 8/8 (Aralık2025), 26-40.
JAMA Özsöz İ, Karaca F, Kartal PÇ, Ertekin MB, Önal Z, Ahıpaşaoğlu Ö, Yılmaz A. Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar. MTA Yer. Mad. 2025;8:26–40.
MLA Özsöz, İlkin vd. “Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar”. MTA Yerbilimleri ve Madencilik Dergisi, c. 8, sy. 8, 2025, ss. 26-40.
Vancouver Özsöz İ, Karaca F, Kartal PÇ, Ertekin MB, Önal Z, Ahıpaşaoğlu Ö, vd. Doğal hidrojen aramacılığı: Hedef litolojiler, yüzey indikatörleri ve jeofizik–jeokimyasal yaklaşımlar. MTA Yer. Mad. 2025;8(8):26-40.