Araştırma Makalesi

CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS

-
https://doi.org/10.22531/muglajsci.1558178

Öz

Single-walled carbon nanotubes (SWNTs) have emerged as promising drug delivery vehicles due to their exceptional structural and chemical properties. This study employs molecular dynamics (MD) simulations to investigate the adsorption, interaction dynamics, and electrically controlled release of green tea catechin derivatives, epigallocatechin (EGC) and epigallocatechin gallate (EGCG), onto armchair SWNTs with chiralities (10,10), (12,12), and (14,14). Our findings demonstrate that EGC and EGCG exhibit the most stable interactions with SWNTs, primarily driven by enhanced π-π stacking interactions. This is evidenced by lower Root Mean Square Deviation (RMSD) values and closer interaction distances between the catechin derivatives and the SWNTs. Furthermore, we explore the influence of an external electric field on the van der Waals interaction energies between the catechins and SWNTs. Our results indicate that the application of an electric field can effectively modulate these interactions, providing a potential mechanism for controlled drug release. Among the studied SWNTs, the (14,14) SWNT consistently exhibits the strongest interactions with the catechin derivatives and demonstrates the most responsive behavior to electric field modulation. These findings suggest that (14,14) SWNTs may be particularly suitable as electrically controlled drug delivery vehicles for green tea catechins and other molecules with similar structural characteristics.

Kaynakça

  • Kondo, T., Oka, T., Sato, H., Shinno, Y., Washio, K., Takano, M., Morito, T., Takata, K., Ohara, N., Ouchida, M., Shimizu, K., Yoshino, T., "Accumulation of aberrant CpG hypermethylation by Helicobacter pylori infection promotes development and progression of gastric MALT lymphoma", Int J Oncol, 35, 547–557, 2009.
  • Meng, J., Chen, Y., Wang, J., Qiu, J., Chang, C., Bi, F., Wu, X., Liu, W., "EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway", Ann Transl Med, 8, 200–200, 2020.
  • Singh, B.N., Shankar, S., Srivastava, R.K., "Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications," 82(12), 1807–1821. 2011.
  • Gu, J.-W., Makey, K.L., Tucker, K.B., Chinchar, E., Mao, X., Pei, I., Thomas, E.Y., Miele, L., "EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression", Vasc Cell, 5, 9, 2013.
  • Huh, S.W., Bae, S.M., Kim, Y.-W., Lee, J.M., Namkoong, S.E., Lee, I.P., Kim, S.H., Kim, C.K., Ahn, W.S., "Anticancer effects of (−)-epigallocatechin-3-gallate on ovarian carcinoma cell lines," Gynecol Oncol, 94, 760–768, 2004.
  • Kim, J., Zhang, X., Rieger-Christ, K.M., Summerhayes, I.C., Wazer, D.E., Paulson, K.E., Yee, A.S., "Suppression of Wnt Signaling by the Green Tea Compound (–)-Epigallocatechin 3-Gallate (EGCG) in Invasive Breast Cancer Cells", J Biol Chem, 281, 10865–10875, 2006.
  • Zan, L., Chen, Q., Zhang, L., Li, X., "Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25," Bioengineered, 10, 374–382, 2019.
  • Qin, J., Fu, M., Wang, J., Huang, F., Liu, H., Huangfu, M., Yu, D., Liu, H., Li, X., Guan, X., Chen, X., "PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin 3 gallate in ovarian cancer" , Oncol Rep, 43, 1885-1896, 2020.
  • Zhang, W., Zhang, Z., Zhang, Y., "The application of carbon nanotubes in target drug delivery systems for cancer therapies", Nanoscale Res Lett, 6, 555, 2011.
  • Li, Z., Tozer, T., Alisaraie, L., "Molecular Dynamics Studies for Optimization of Noncovalent Loading of Vinblastine on Single-Walled Carbon Nanotube," J Phys Chem C, 120, 4061–4070, 2016.
  • Rastogi, V., Yadav, P., Bhattacharya, S.S., Mishra, A.K., Verma, N., Verma, A., Pandit, J.K., "Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells," J Drug Deliv, 2014, 1–23, 2014.
  • Ünlü, A., Meran, M., Dinc, B., Karatepe, N., Bektaş, M., Güner, F.S., "Cytotoxicity of doxorubicin loaded single-walled carbon nanotubes", Mol Biol Rep, 45, 523–531, 2018.
  • Dinc, B., Ustunsoy, R., Unlu, A., Meran, M., Karatepe, N., Bektas, M., "A Comparative Study of Short Multi-Walled Carbon Nanotubes with Different Bulk Densities", Russian J Phys Chem A, 96, 2938–2947, 2022.
  • Zare, H., Ahmadi, S., Ghasemi, A., Ghanbari, M., Rabiee, N., Bagherzadeh, M., Karimi, M., Webster, T.J., Hamblin, M.R., Mostafavi, E., "Carbon Nanotubes: Smart Drug/Gene Delivery Carriers", Int J Nanomedicine, 16, 1681–1706, 2021.
  • Kordzadeh, A., Amjad-Iranagh, S., Zarif, M., Modarress, H., "Adsorption and encapsulation of the drug doxorubicin on covalent functionalized carbon nanotubes: A scrutinized study by using molecular dynamics simulation and quantum mechanics calculation", J Mol Graph Model, 88, 11–22, 2019.
  • Meran, M., Akkus, P.D., Kurkcuoglu, O., Baysak, E., Hizal, G., Haciosmanoglu, E., Unlu, A., Karatepe, N., Güner, F.S., "Noncovalent Pyrene-Polyethylene Glycol Coatings of Carbon Nanotubes Achieve in Vitro Biocompatibility", Langmuir, 34, 12071–12082, 2018.
  • Meran, M., Emisoglu-Kulahli, H., "Encapsulation of catechin derivatives in single-walled carbon nanotubes", Comput Theor Chem, 1226, 2023.
  • Mahdavi, M., Fattahi, A., Tajkhorshid, E., Nouranian, S., "Molecular Insights into the Loading and Dynamics of Doxorubicin on PEGylated Graphene Oxide Nanocarriers," ACS Appl Bio Mater, 3, 1354–1363, 2020.
  • Wang, Y., Xu, Z., "Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing", RSC Adv, 6, 314–322, 2015.
  • Arabian, T., Amjad-Iranagh, S., Halladj, R., "Molecular dynamics simulation study of doxorubicin adsorption on functionalized carbon nanotubes with folic acid and tryptophan", Scientific Reports 2021, 11, 1–11, 2021.
  • Contreras, L., Villarroel, I., Torres, C., Rozas, R., "Doxorubicin encapsulation in carbon nanotubes having haeckelite or stone–wales defects as drug carriers: A molecular dynamics approach", Molecules, 26, 1586, 2021.
  • Rungnim, C., Rungrotmongkol, T., Poo-arporn, R.P., "pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations", J Mol Graph Model, 70, 70–76, 2016.
  • Parlak, C., Alver, Ö., "Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: A comparative DFT study," J Mol Struct, 1184, 110–113, 2019.
  • Youssef, L., Patra, D., "Interaction of carbon nanotubes with curcumin: Effect of temperature and pH on simultaneous static and dynamic fluorescence quenching of curcumin using carbon nanotubes", Luminescence, 35, 659–666, 2020.
  • Lv, S., Tang, Z., Li, M., Lin, J., Song, W., Liu, H., Huang, Y., Zhang, Y., Chen, X., "Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer", Biomaterials, 35, 6118–6129, 2014.
  • Al-Qattan, M.N., Deb, P.K., Tekade, R.K., "Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery", Drug Discov Today, 23, 235–250, 2018.
  • McGibbon, R.T., Pande, V.S., "Learning Kinetic Distance Metrics for Markov State Models of Protein Conformational Dynamics", J Chem Theory Comput, 9, 2900–2906, 2013.
  • Yoosefian, M., Mirhaji, E., Afshar, M., Juan, A., "Molecular dynamics simulations on interaction of ssDNA-causing DM1 with carbon and boron nitride nanotubes to inhibit the formation of CTG repeat secondary structures", 524, 146572, 2020.
  • Meran, M., Akkus, P.D., Kurkcuoglu, O., Baysak, E., Hizal, G., Haciosmanoglu, E., Unlu, A., Karatepe, N., Güner, F.S., "Noncovalent Pyrene-Polyethylene Glycol Coatings of Carbon Nanotubes Achieve in Vitro Biocompatibility", Langmuir, 34, 12071–12082, 2018.
  • Contreras, M.L., Torres, C., Villarroel, I., Rozas, R., "Molecular dynamics assessment of doxorubicin–carbon nanotubes molecular interactions for the design of drug delivery systems", Struct Chem, 30, 369–384, 2019.
  • Kianfar, E., "Magnetic Nanoparticles in Targeted Drug Delivery: a Review", J Supercond Nov Magn, 34, 1709–1735, 2021.
  • Le, T.-A., Zhang, X., Hoshiar, A.K., Yoon, J., "Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery", Sensors, 17, 2050, 2017.
  • Kumar, R., Srivastava, A., Singh, A.K., Singh, R.K., "Externally Triggered Drug Delivery Techniques Using Micro and Nanoparticles", IEEE Access, 10, 2022.

ELEKTROMANYETİK DUYARLI YEŞİL ÇAY KATEŞİN TAŞIMA SİSTEMLERİ OLARAK KARBON NANOTÜPLER

-
https://doi.org/10.22531/muglajsci.1558178

Öz

Tek duvarlı karbon nanotüpler (TDKN'ler), üstün yapısal ve kimyasal özellikleri nedeniyle umut verici ilaç taşıma araçları olarak ortaya çıkmıştır. Bu çalışmada, yeşil çay kateşin türevleri olan epigallokateşin (EGK) ve epigallokateşin gallatın (EGKG), (10,10), (12,12) ve (14,14) kiralitelerine sahip koltuk tipi (armchair) TDKN'lere adsorpsiyonunu, etkileşim dinamiklerini ve elektriksel kontrollü salımını incelemek için moleküler dinamik (MD) simülasyonları kullanılmıştır. Elde edilen bulgular, EGK ve EGKG'nin TDKN'lerle en kararlı etkileşimleri sergilediğini göstermiştir; bu etkileşimler öncelikle gelişmiş π-π istifleme etkileşimleriyle yönlendirilmiştir. Bu, kateşin türevleri ve TDKN'ler arasında daha düşük Kök Ortalama Kare Sapması (KOKS) değerleri ve daha yakın etkileşim mesafeleriyle desteklenmiştir. Ayrıca, harici bir elektrik alanının kateşinler ve TDKN'ler arasındaki van der Waals etkileşim enerjileri üzerindeki etkisini araştırılmıştır. Elde edilen sonuçlar, bir elektrik alanı uygulamasının bu etkileşimleri etkili bir şekilde modüle edebildiğini göstermekte ve kontrollü ilaç salımı için potansiyel bir mekanizma sunmuştur. Çalışmada; TDKN'ler arasında, (14,14) TDKN tutarlı bir şekilde kateşin türevleriyle en güçlü etkileşimleri sergilemekte ve elektrik alanı modülasyonuna en duyarlı davranışı göstermektedir. Elde edilen bulgular, (14,14) TDKN'lerin yeşil çay kateşinleri ve benzer yapısal özelliklere sahip diğer moleküller için elektriksel kontrollü ilaç taşıma araçları olarak özellikle uygun olabileceğini göstermektedir.

Kaynakça

  • Kondo, T., Oka, T., Sato, H., Shinno, Y., Washio, K., Takano, M., Morito, T., Takata, K., Ohara, N., Ouchida, M., Shimizu, K., Yoshino, T., "Accumulation of aberrant CpG hypermethylation by Helicobacter pylori infection promotes development and progression of gastric MALT lymphoma", Int J Oncol, 35, 547–557, 2009.
  • Meng, J., Chen, Y., Wang, J., Qiu, J., Chang, C., Bi, F., Wu, X., Liu, W., "EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway", Ann Transl Med, 8, 200–200, 2020.
  • Singh, B.N., Shankar, S., Srivastava, R.K., "Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications," 82(12), 1807–1821. 2011.
  • Gu, J.-W., Makey, K.L., Tucker, K.B., Chinchar, E., Mao, X., Pei, I., Thomas, E.Y., Miele, L., "EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression", Vasc Cell, 5, 9, 2013.
  • Huh, S.W., Bae, S.M., Kim, Y.-W., Lee, J.M., Namkoong, S.E., Lee, I.P., Kim, S.H., Kim, C.K., Ahn, W.S., "Anticancer effects of (−)-epigallocatechin-3-gallate on ovarian carcinoma cell lines," Gynecol Oncol, 94, 760–768, 2004.
  • Kim, J., Zhang, X., Rieger-Christ, K.M., Summerhayes, I.C., Wazer, D.E., Paulson, K.E., Yee, A.S., "Suppression of Wnt Signaling by the Green Tea Compound (–)-Epigallocatechin 3-Gallate (EGCG) in Invasive Breast Cancer Cells", J Biol Chem, 281, 10865–10875, 2006.
  • Zan, L., Chen, Q., Zhang, L., Li, X., "Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25," Bioengineered, 10, 374–382, 2019.
  • Qin, J., Fu, M., Wang, J., Huang, F., Liu, H., Huangfu, M., Yu, D., Liu, H., Li, X., Guan, X., Chen, X., "PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin 3 gallate in ovarian cancer" , Oncol Rep, 43, 1885-1896, 2020.
  • Zhang, W., Zhang, Z., Zhang, Y., "The application of carbon nanotubes in target drug delivery systems for cancer therapies", Nanoscale Res Lett, 6, 555, 2011.
  • Li, Z., Tozer, T., Alisaraie, L., "Molecular Dynamics Studies for Optimization of Noncovalent Loading of Vinblastine on Single-Walled Carbon Nanotube," J Phys Chem C, 120, 4061–4070, 2016.
  • Rastogi, V., Yadav, P., Bhattacharya, S.S., Mishra, A.K., Verma, N., Verma, A., Pandit, J.K., "Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells," J Drug Deliv, 2014, 1–23, 2014.
  • Ünlü, A., Meran, M., Dinc, B., Karatepe, N., Bektaş, M., Güner, F.S., "Cytotoxicity of doxorubicin loaded single-walled carbon nanotubes", Mol Biol Rep, 45, 523–531, 2018.
  • Dinc, B., Ustunsoy, R., Unlu, A., Meran, M., Karatepe, N., Bektas, M., "A Comparative Study of Short Multi-Walled Carbon Nanotubes with Different Bulk Densities", Russian J Phys Chem A, 96, 2938–2947, 2022.
  • Zare, H., Ahmadi, S., Ghasemi, A., Ghanbari, M., Rabiee, N., Bagherzadeh, M., Karimi, M., Webster, T.J., Hamblin, M.R., Mostafavi, E., "Carbon Nanotubes: Smart Drug/Gene Delivery Carriers", Int J Nanomedicine, 16, 1681–1706, 2021.
  • Kordzadeh, A., Amjad-Iranagh, S., Zarif, M., Modarress, H., "Adsorption and encapsulation of the drug doxorubicin on covalent functionalized carbon nanotubes: A scrutinized study by using molecular dynamics simulation and quantum mechanics calculation", J Mol Graph Model, 88, 11–22, 2019.
  • Meran, M., Akkus, P.D., Kurkcuoglu, O., Baysak, E., Hizal, G., Haciosmanoglu, E., Unlu, A., Karatepe, N., Güner, F.S., "Noncovalent Pyrene-Polyethylene Glycol Coatings of Carbon Nanotubes Achieve in Vitro Biocompatibility", Langmuir, 34, 12071–12082, 2018.
  • Meran, M., Emisoglu-Kulahli, H., "Encapsulation of catechin derivatives in single-walled carbon nanotubes", Comput Theor Chem, 1226, 2023.
  • Mahdavi, M., Fattahi, A., Tajkhorshid, E., Nouranian, S., "Molecular Insights into the Loading and Dynamics of Doxorubicin on PEGylated Graphene Oxide Nanocarriers," ACS Appl Bio Mater, 3, 1354–1363, 2020.
  • Wang, Y., Xu, Z., "Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing", RSC Adv, 6, 314–322, 2015.
  • Arabian, T., Amjad-Iranagh, S., Halladj, R., "Molecular dynamics simulation study of doxorubicin adsorption on functionalized carbon nanotubes with folic acid and tryptophan", Scientific Reports 2021, 11, 1–11, 2021.
  • Contreras, L., Villarroel, I., Torres, C., Rozas, R., "Doxorubicin encapsulation in carbon nanotubes having haeckelite or stone–wales defects as drug carriers: A molecular dynamics approach", Molecules, 26, 1586, 2021.
  • Rungnim, C., Rungrotmongkol, T., Poo-arporn, R.P., "pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations", J Mol Graph Model, 70, 70–76, 2016.
  • Parlak, C., Alver, Ö., "Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: A comparative DFT study," J Mol Struct, 1184, 110–113, 2019.
  • Youssef, L., Patra, D., "Interaction of carbon nanotubes with curcumin: Effect of temperature and pH on simultaneous static and dynamic fluorescence quenching of curcumin using carbon nanotubes", Luminescence, 35, 659–666, 2020.
  • Lv, S., Tang, Z., Li, M., Lin, J., Song, W., Liu, H., Huang, Y., Zhang, Y., Chen, X., "Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer", Biomaterials, 35, 6118–6129, 2014.
  • Al-Qattan, M.N., Deb, P.K., Tekade, R.K., "Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery", Drug Discov Today, 23, 235–250, 2018.
  • McGibbon, R.T., Pande, V.S., "Learning Kinetic Distance Metrics for Markov State Models of Protein Conformational Dynamics", J Chem Theory Comput, 9, 2900–2906, 2013.
  • Yoosefian, M., Mirhaji, E., Afshar, M., Juan, A., "Molecular dynamics simulations on interaction of ssDNA-causing DM1 with carbon and boron nitride nanotubes to inhibit the formation of CTG repeat secondary structures", 524, 146572, 2020.
  • Meran, M., Akkus, P.D., Kurkcuoglu, O., Baysak, E., Hizal, G., Haciosmanoglu, E., Unlu, A., Karatepe, N., Güner, F.S., "Noncovalent Pyrene-Polyethylene Glycol Coatings of Carbon Nanotubes Achieve in Vitro Biocompatibility", Langmuir, 34, 12071–12082, 2018.
  • Contreras, M.L., Torres, C., Villarroel, I., Rozas, R., "Molecular dynamics assessment of doxorubicin–carbon nanotubes molecular interactions for the design of drug delivery systems", Struct Chem, 30, 369–384, 2019.
  • Kianfar, E., "Magnetic Nanoparticles in Targeted Drug Delivery: a Review", J Supercond Nov Magn, 34, 1709–1735, 2021.
  • Le, T.-A., Zhang, X., Hoshiar, A.K., Yoon, J., "Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery", Sensors, 17, 2050, 2017.
  • Kumar, R., Srivastava, A., Singh, A.K., Singh, R.K., "Externally Triggered Drug Delivery Techniques Using Micro and Nanoparticles", IEEE Access, 10, 2022.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanobiyoteknoloji, Nanokimya, Biyolojik Olarak Aktif Moleküller
Yazarlar

Handan Emişoğlu Külahlı 0000-0003-3702-5802

Mehdi Meran 0000-0001-8804-1365

Yayımlanma Tarihi
Gönderilme Tarihi 30 Eylül 2024
Kabul Tarihi 25 Kasım 2024

Kaynak Göster

APA Emişoğlu Külahlı, H., & Meran, M. (t.y.). CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS. Mugla Journal of Science and Technology. https://doi.org/10.22531/muglajsci.1558178
AMA Emişoğlu Külahlı H, Meran M. CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS. MJST. doi:10.22531/muglajsci.1558178
Chicago Emişoğlu Külahlı, Handan, ve Mehdi Meran. “CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS”. Mugla Journal of Science and Technologyt.y. https://doi.org/10.22531/muglajsci.1558178.
EndNote Emişoğlu Külahlı H, Meran M CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS. Mugla Journal of Science and Technology
IEEE H. Emişoğlu Külahlı ve M. Meran, “CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS”, MJST, doi: 10.22531/muglajsci.1558178.
ISNAD Emişoğlu Külahlı, Handan - Meran, Mehdi. “CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS”. Mugla Journal of Science and Technology. t.y. https://doi.org/10.22531/muglajsci.1558178.
JAMA Emişoğlu Külahlı H, Meran M. CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS. MJST. doi:10.22531/muglajsci.1558178.
MLA Emişoğlu Külahlı, Handan ve Mehdi Meran. “CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS”. Mugla Journal of Science and Technology, doi:10.22531/muglajsci.1558178.
Vancouver Emişoğlu Külahlı H, Meran M. CARBON NANOTUBES AS ELECTROMAGNETICALLY RESPONSIVE GREEN TEA CATECHIN DELIVERY SYSTEMS. MJST.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.