Araştırma Makalesi
BibTex RIS Kaynak Göster

868 MHZ FREKANSINDA AÇIK ALAN ORTAMLARINDA KISA MENZILLI IOT UYGULAMALARI IÇIN XBEE P2P BAĞLANTILARININ YAYILIM ÇALIŞMASI

Yıl 2025, Cilt: 11 Sayı: 1, 45 - 54, 30.06.2025
https://doi.org/10.22531/muglajsci.1681856

Öz

Bu çalışma, dış ortamlarda 868 MHz'de çalışan XBee modüllerini kullanan kısa menzilli noktadan noktaya (P2P) kablosuz iletişim için bir ön yayılma analizi sunmaktadır. Kısa menzilli Nesnelerin İnterneti (IoT) uygulamaları bağlamında XBee P2P bağlantılarının doğrudan planlanmasını ve dağıtımını kolaylaştırmak için kentsel, banliyö ve kırsal ortamlarda görüş hattı (LOS) koşulları altında ampirik ölçümler yapılmıştır. Serbest Uzay Yol Kaybı (FSPL), İki Işınlı Zemin Yansıması, Log-mesafe, Hata-Okumura ve Cost231-Hata dahil olmak üzere beş iyi bilinen ampirik yol kaybı modelinin performansı, Alınan Sinyal Gücü Göstergesi (RSSI) verilerine dayanarak değerlendirilmiştir. Bulgular, FSPL modelinin kırsal alanlarda en yüksek doğruluk seviyesini gösterirken, Log-distance modelinin kentsel ve banliyö bağlamlarında daha iyi performans sergilediğini göstermektedir. Buna karşılık, Two-Ray ve Cost231-Hata modelleri tüm ortamlarda ölçülen verilerle nispeten sınırlı derecede uyum göstermektedir. Bu bulguların, dış mekan IoT ortamlarında enerji tasarruflu ve uygun maliyetli XBee tabanlı P2P ağlarının basit bir şekilde konuşlandırılması için değerli bilgiler sunması beklenmektedir.

Kaynakça

  • J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” in IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2007, 46–51.
  • M. Bouzidi, M. Mohamed, Y. Dalveren, A. Moldsvor, F. A. Cheikh, and M. Derawi, “Propagation Measurements for IQRF Network in an Urban Environment,” Sensors, 22, 18, 18, 2022.
  • D. Dogan, Y. Dalveren, A. Kara, and M. Derawi, “A Simplified Method Based on RSSI Fingerprinting for IoT Device Localization in Smart Cities,” IEEE Access, 2024.
  • M. Derawi, Y. Dalveren, and F. A. Cheikh, “Internet-of-Things-Based Smart Transportation Systems for Safer Roads,” in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), 2020.
  • X. Wang and L. Wang, “Intelligent Light Control System Based on Zigbee,” Computational Intelligence and Neuroscience, 2022, 1–10, 2022.
  • E. Avşar and M. N. Mowla, “Wireless communication protocols in smart agriculture: A review on applications, challenges and future trends,” Ad Hoc Networks, 136, 102982, 2022.
  • D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things: Vision, applications and research challenges,” Ad hoc networks, 10, 1497–1516, 2012.
  • E. Zanaj, G. Caso, L. De Nardis, A. Mohammadpour, Ö. Alay, and M.-G. Di Benedetto, “Energy efficiency in short and wide-area IoT technologies—A survey,” Technologies, 9, 22, 2021.
  • H. A. Alobaidy, M. J. Singh, M. Behjati, R. Nordin, and N. F. Abdullah, “Wireless transmissions, propagation and channel modelling for IoT technologies: Applications and challenges,” IEEE Access, 10, 24095–24131, 2022.
  • “Zigbee | Complete IOT Solution,” CSA-IOT. Accessed: Apr. 16, 2025. [Online]. Available: https://csa-iot.org/all-solutions/zigbee/
  • “Explore the Digi XBee Ecosystem.” Accessed: Apr. 16, 2025. [Online]. Available: https://www.digi.com/xbee
  • G. Çetin, S. Karadaş, and F. Okul, “A Wireless Sensor Network Application for Vehicle Tracking in Campus Areas,” MJST, 3, 150-154, 2017.
  • N. R. Kumar, C. Bhuvana, and S. Anushya, “Comparison of ZigBee and Bluetooth wireless technologies-survey,” in 2017 International Conference on Information Communication and Embedded Systems (ICICES), IEEE, 2017, 1–4.
  • S. J. Danbatta and A. Varol, “Comparison of Zigbee, Z-Wave, Wi-Fi, and bluetooth wireless technologies used in home automation,” in 2019 7th International Symposium on Digital Forensics and Security (ISDFS), IEEE, 2019, 1–5.
  • M. Bouzidi, Y. Dalveren, F. A. Cheikh, and M. Derawi, “Use of the IQRF technology in Internet-of-Things-based smart cities,” IEEE Access, 8, 56615–56629, 2020.
  • R. Robles-Enciso et al., “Lora, zigbee and 5g propagation and transmission performance in an indoor environment at 868 mhz,” Sensors, 23, 6, 3283, 2023.
  • S. Kurt and B. Tavli, “Path-Loss Modeling for Wireless Sensor Networks: A review of models and comparative evaluations,” IEEE Antennas and Propagation Magazine, 59, 18–37, 2017.
  • Y. Dalveren and A. Kara, “Performance evaluation of empirical path loss models for a linear wireless sensor network deployment in suburban and rural environments,” Hittite Journal of Science and Engineering, 7, 313–320, 2020.
  • T. de Sales Bezerra, J. A. R. de Sousa, S. A. da Silva Eleutério, and J. S. Rocha, “Accuracy of propagation models to power prediction in WSN ZigBee applied in outdoor environment,” in 2015 Sixth Argentine Conference on Embedded Systems (Case), IEEE, 2015, 19–24.
  • S. Widodo, E. A. Pratama, S. Pramono, and S. B. Basuki, “Outdoor propagation modeling for wireless sensor networks 2.4 GHz,” in 2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), IEEE, 2017, 158–162.
  • A. Cama-Pinto, G. Piñeres-Espitia, J. Caicedo-Ortiz, E. Ramírez-Cerpa, L. Betancur-Agudelo, and F. Gómez-Mula, “Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules,” International Journal of Distributed Sensor Networks, 13, 155014771772269, 2017.
  • I. Kuzminykh, A. Snihurov, and A. Carlsson, “Testing of communication range in ZigBee technology,” in 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), IEEE, 2017, 133–136.
  • I. Desnanjaya, I. N. B. Hartawan, W. G. S. Parwita, and I. Iswara, “Performance analysis of data transmission on a wireless sensor network using the XBee pro series 2B RF module,” IJEIS (Indonesian J. Electron. Instrum. Syst, 10, 211, 2020.
  • K. F. Haque, A. Abdelgawad, and K. Yelamarthi, “Comprehensive performance analysis of zigbee communication: an experimental approach with XBee S2C module,” Sensors, 22, 3245, 2022.
  • B. P. R. Bhavanam and P. Ragam, “Assessing the performance of ZigBee RF protocol using path loss models for IoT application,” in International e-Conference on Advances in Computer Engineering and Communication Systems (ICACECS 2023), Atlantis Press, 2023, 348–359.
  • C. Esquea-Osorio, A. Alvarez-Ortega, A. J. Soto-Vergel, A. E. Paez, and D. Guevara, “Evaluation of electromagnetic propagation models for wireless communications in vegetated and short-grass environments,” in 2023 IEEE Colombian Caribbean Conference (C3), IEEE, 2023, 1–6.
  • A. Barrios-Ulloa, A. Cama-Pinto, E. De-la-Hoz-Franco, R. Ramírez-Velarde, and D. Cama-Pinto, “Modeling of path loss for radio wave propagation in wireless sensor networks in cassava crops using machine learning,” Agriculture, 13, 2046, 2023.
  • P. Uarchoojitt, S. Pothongkham, T. Kongnarong, W. Boonsong, C. Samakee, and T. Inthasuth, “The communication link analysis of ZigBee mesh networks using received signal strength indicator (RSSI) for the agricultural slope environment,” in 2023 International Conference on Electronics, Information, and Communication (ICEIC), IEEE, 2023, 1–4.
  • B. A. Iyaomolere, J. J. Popoola, and K. F. Akingbade, “Empirical Path Loss Characterization for Zigbee Wireless Sensor Networks in Cassava Farms Using a Dual-Slope Log-Distance Model,” Saudi J Eng Technol, 9, 529–540, 2024.
  • S. Samarakoon, M. B. Dissanayake, K. M. Liyanage, S. Navaratne, C. Jayasinghe, and P. Illangakoon, “Path Loss Analysis of ZigBee for Smart Meter Network Deployment in NAN,” International Journal of Computer Network and Information Security, 16, 86-97, 2024.
  • B. Malinowsky, J. Grønbæk, and H.-P. Schwefel, “Realization of timed reliable communication over off-the-shelf wireless technologies,” in 2013 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2013, 4736–4741.
  • P. A. John, R. Agren, Y.-J. Chen, C. Rohner, and E. Ngai, “868 MHz Wireless Sensor Network - A Study,” Sep. 02, 2016, arXiv: arXiv:1609.00475. doi: 10.48550/arXiv.1609.00475.
  • T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. USA: Prentice Hall PTR, 2001.
  • A. Goldsmith, Wireless Communications. USA: Cambridge University Press, 2005.
  • M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE transactions on Vehicular Technology, 29, 317–325, 2013.
  • N. Blaunstein, Radio propagation in cellular networks. Artech House, Inc., United States, 1999.
  • “XBee® SX 868 RF Module User Guide - XBee® SX 868 RF Module User Guide.” Accessed: Apr. 04, 2025. [Online]. Available: https://docs.digi.com/resources/documentation/Digidocs/90001538/
  • “XCTU User Guide - XCTU User Guide.” Accessed: Apr. 04, 2025. [Online]. Available: https://docs.digi.com/resources/documentation/Digidocs/90001458-13/
  • G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, “Statistical Learning,” in An Introduction to Statistical Learning, in Springer Texts in Statistics. , Cham: Springer International Publishing, 2023, 15–67.

A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ

Yıl 2025, Cilt: 11 Sayı: 1, 45 - 54, 30.06.2025
https://doi.org/10.22531/muglajsci.1681856

Öz

This study presents a preliminary propagation analysis for short-range point-to-point (P2P) wireless communication employing XBee modules operating at the 868 MHz in outdoor environments. In order to facilitate straightforward planning and deployment of XBee P2P links in the context of short-range Internet of Things (IoT) applications, empirical measurements were conducted under line-of-sight (LOS) conditions in urban, suburban, and rural environments. The performance of five well-known empirical path loss models, including Free Space Path Loss (FSPL), Two-Ray Ground Reflection, Log-distance, Hata-Okumura, and Cost231-Hata, was then evaluated based on Received Signal Strength Indicator (RSSI) data. The findings indicate that the FSPL model demonstrates the highest level of accuracy in rural areas, while the Log-distance model exhibits better performance in urban and suburban contexts. In contrast, the Two-Ray and Cost231-Hata models demonstrate a comparatively limited degree of agreement with the measured data across all environments. It is expected that these findings may offer valuable insights for the simple deployment of energy-efficient and cost-effective XBee-based P2P networks in outdoor IoT settings.

Kaynakça

  • J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” in IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2007, 46–51.
  • M. Bouzidi, M. Mohamed, Y. Dalveren, A. Moldsvor, F. A. Cheikh, and M. Derawi, “Propagation Measurements for IQRF Network in an Urban Environment,” Sensors, 22, 18, 18, 2022.
  • D. Dogan, Y. Dalveren, A. Kara, and M. Derawi, “A Simplified Method Based on RSSI Fingerprinting for IoT Device Localization in Smart Cities,” IEEE Access, 2024.
  • M. Derawi, Y. Dalveren, and F. A. Cheikh, “Internet-of-Things-Based Smart Transportation Systems for Safer Roads,” in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), 2020.
  • X. Wang and L. Wang, “Intelligent Light Control System Based on Zigbee,” Computational Intelligence and Neuroscience, 2022, 1–10, 2022.
  • E. Avşar and M. N. Mowla, “Wireless communication protocols in smart agriculture: A review on applications, challenges and future trends,” Ad Hoc Networks, 136, 102982, 2022.
  • D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things: Vision, applications and research challenges,” Ad hoc networks, 10, 1497–1516, 2012.
  • E. Zanaj, G. Caso, L. De Nardis, A. Mohammadpour, Ö. Alay, and M.-G. Di Benedetto, “Energy efficiency in short and wide-area IoT technologies—A survey,” Technologies, 9, 22, 2021.
  • H. A. Alobaidy, M. J. Singh, M. Behjati, R. Nordin, and N. F. Abdullah, “Wireless transmissions, propagation and channel modelling for IoT technologies: Applications and challenges,” IEEE Access, 10, 24095–24131, 2022.
  • “Zigbee | Complete IOT Solution,” CSA-IOT. Accessed: Apr. 16, 2025. [Online]. Available: https://csa-iot.org/all-solutions/zigbee/
  • “Explore the Digi XBee Ecosystem.” Accessed: Apr. 16, 2025. [Online]. Available: https://www.digi.com/xbee
  • G. Çetin, S. Karadaş, and F. Okul, “A Wireless Sensor Network Application for Vehicle Tracking in Campus Areas,” MJST, 3, 150-154, 2017.
  • N. R. Kumar, C. Bhuvana, and S. Anushya, “Comparison of ZigBee and Bluetooth wireless technologies-survey,” in 2017 International Conference on Information Communication and Embedded Systems (ICICES), IEEE, 2017, 1–4.
  • S. J. Danbatta and A. Varol, “Comparison of Zigbee, Z-Wave, Wi-Fi, and bluetooth wireless technologies used in home automation,” in 2019 7th International Symposium on Digital Forensics and Security (ISDFS), IEEE, 2019, 1–5.
  • M. Bouzidi, Y. Dalveren, F. A. Cheikh, and M. Derawi, “Use of the IQRF technology in Internet-of-Things-based smart cities,” IEEE Access, 8, 56615–56629, 2020.
  • R. Robles-Enciso et al., “Lora, zigbee and 5g propagation and transmission performance in an indoor environment at 868 mhz,” Sensors, 23, 6, 3283, 2023.
  • S. Kurt and B. Tavli, “Path-Loss Modeling for Wireless Sensor Networks: A review of models and comparative evaluations,” IEEE Antennas and Propagation Magazine, 59, 18–37, 2017.
  • Y. Dalveren and A. Kara, “Performance evaluation of empirical path loss models for a linear wireless sensor network deployment in suburban and rural environments,” Hittite Journal of Science and Engineering, 7, 313–320, 2020.
  • T. de Sales Bezerra, J. A. R. de Sousa, S. A. da Silva Eleutério, and J. S. Rocha, “Accuracy of propagation models to power prediction in WSN ZigBee applied in outdoor environment,” in 2015 Sixth Argentine Conference on Embedded Systems (Case), IEEE, 2015, 19–24.
  • S. Widodo, E. A. Pratama, S. Pramono, and S. B. Basuki, “Outdoor propagation modeling for wireless sensor networks 2.4 GHz,” in 2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), IEEE, 2017, 158–162.
  • A. Cama-Pinto, G. Piñeres-Espitia, J. Caicedo-Ortiz, E. Ramírez-Cerpa, L. Betancur-Agudelo, and F. Gómez-Mula, “Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules,” International Journal of Distributed Sensor Networks, 13, 155014771772269, 2017.
  • I. Kuzminykh, A. Snihurov, and A. Carlsson, “Testing of communication range in ZigBee technology,” in 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), IEEE, 2017, 133–136.
  • I. Desnanjaya, I. N. B. Hartawan, W. G. S. Parwita, and I. Iswara, “Performance analysis of data transmission on a wireless sensor network using the XBee pro series 2B RF module,” IJEIS (Indonesian J. Electron. Instrum. Syst, 10, 211, 2020.
  • K. F. Haque, A. Abdelgawad, and K. Yelamarthi, “Comprehensive performance analysis of zigbee communication: an experimental approach with XBee S2C module,” Sensors, 22, 3245, 2022.
  • B. P. R. Bhavanam and P. Ragam, “Assessing the performance of ZigBee RF protocol using path loss models for IoT application,” in International e-Conference on Advances in Computer Engineering and Communication Systems (ICACECS 2023), Atlantis Press, 2023, 348–359.
  • C. Esquea-Osorio, A. Alvarez-Ortega, A. J. Soto-Vergel, A. E. Paez, and D. Guevara, “Evaluation of electromagnetic propagation models for wireless communications in vegetated and short-grass environments,” in 2023 IEEE Colombian Caribbean Conference (C3), IEEE, 2023, 1–6.
  • A. Barrios-Ulloa, A. Cama-Pinto, E. De-la-Hoz-Franco, R. Ramírez-Velarde, and D. Cama-Pinto, “Modeling of path loss for radio wave propagation in wireless sensor networks in cassava crops using machine learning,” Agriculture, 13, 2046, 2023.
  • P. Uarchoojitt, S. Pothongkham, T. Kongnarong, W. Boonsong, C. Samakee, and T. Inthasuth, “The communication link analysis of ZigBee mesh networks using received signal strength indicator (RSSI) for the agricultural slope environment,” in 2023 International Conference on Electronics, Information, and Communication (ICEIC), IEEE, 2023, 1–4.
  • B. A. Iyaomolere, J. J. Popoola, and K. F. Akingbade, “Empirical Path Loss Characterization for Zigbee Wireless Sensor Networks in Cassava Farms Using a Dual-Slope Log-Distance Model,” Saudi J Eng Technol, 9, 529–540, 2024.
  • S. Samarakoon, M. B. Dissanayake, K. M. Liyanage, S. Navaratne, C. Jayasinghe, and P. Illangakoon, “Path Loss Analysis of ZigBee for Smart Meter Network Deployment in NAN,” International Journal of Computer Network and Information Security, 16, 86-97, 2024.
  • B. Malinowsky, J. Grønbæk, and H.-P. Schwefel, “Realization of timed reliable communication over off-the-shelf wireless technologies,” in 2013 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2013, 4736–4741.
  • P. A. John, R. Agren, Y.-J. Chen, C. Rohner, and E. Ngai, “868 MHz Wireless Sensor Network - A Study,” Sep. 02, 2016, arXiv: arXiv:1609.00475. doi: 10.48550/arXiv.1609.00475.
  • T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. USA: Prentice Hall PTR, 2001.
  • A. Goldsmith, Wireless Communications. USA: Cambridge University Press, 2005.
  • M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE transactions on Vehicular Technology, 29, 317–325, 2013.
  • N. Blaunstein, Radio propagation in cellular networks. Artech House, Inc., United States, 1999.
  • “XBee® SX 868 RF Module User Guide - XBee® SX 868 RF Module User Guide.” Accessed: Apr. 04, 2025. [Online]. Available: https://docs.digi.com/resources/documentation/Digidocs/90001538/
  • “XCTU User Guide - XCTU User Guide.” Accessed: Apr. 04, 2025. [Online]. Available: https://docs.digi.com/resources/documentation/Digidocs/90001458-13/
  • G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, “Statistical Learning,” in An Introduction to Statistical Learning, in Springer Texts in Statistics. , Cham: Springer International Publishing, 2023, 15–67.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik Cihaz ve Sistem Performansı Değerlendirme, Test ve Simülasyon, Kablosuz Haberleşme Sistemleri ve Teknolojileri (Mikro Dalga ve Milimetrik Dalga dahil)
Bölüm Araştırma Makalesi
Yazarlar

Emre Çerçi 0000-0002-1176-1839

Yaser Dalveren 0000-0002-9459-0042

Gönderilme Tarihi 24 Nisan 2025
Kabul Tarihi 30 Mayıs 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Çerçi, E., & Dalveren, Y. (2025). A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ. Mugla Journal of Science and Technology, 11(1), 45-54. https://doi.org/10.22531/muglajsci.1681856
AMA 1.Çerçi E, Dalveren Y. A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ. MJST. 2025;11(1):45-54. doi:10.22531/muglajsci.1681856
Chicago Çerçi, Emre, ve Yaser Dalveren. 2025. “A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ”. Mugla Journal of Science and Technology 11 (1): 45-54. https://doi.org/10.22531/muglajsci.1681856.
EndNote Çerçi E, Dalveren Y (01 Haziran 2025) A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ. Mugla Journal of Science and Technology 11 1 45–54.
IEEE [1]E. Çerçi ve Y. Dalveren, “A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ”, MJST, c. 11, sy 1, ss. 45–54, Haz. 2025, doi: 10.22531/muglajsci.1681856.
ISNAD Çerçi, Emre - Dalveren, Yaser. “A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ”. Mugla Journal of Science and Technology 11/1 (01 Haziran 2025): 45-54. https://doi.org/10.22531/muglajsci.1681856.
JAMA 1.Çerçi E, Dalveren Y. A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ. MJST. 2025;11:45–54.
MLA Çerçi, Emre, ve Yaser Dalveren. “A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ”. Mugla Journal of Science and Technology, c. 11, sy 1, Haziran 2025, ss. 45-54, doi:10.22531/muglajsci.1681856.
Vancouver 1.Çerçi E, Dalveren Y. A PROPAGATION STUDY OF XBEE P2P LINKS FOR SHORT-RANGE IOT APPLICATIONS IN OUTDOOR ENVIRONMENTS AT 868 MHZ. MJST [Internet]. 01 Haziran 2025;11(1):45-54. Erişim adresi: https://izlik.org/JA82JS88UP

8805
Mugla Journal of Science and Technology (MJST) dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.