Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL

Yıl 2025, Cilt: 11 Sayı: 2, 1 - 9, 31.12.2025
https://doi.org/10.22531/muglajsci.1687954

Öz

Enzyme-mimicking materials replicate natural enzyme functions, offering more durable, cost-effective, and eco-friendly alternatives, making them important for biotechnology and industrial applications. In this study, the peroxidase like properties of a FeNiCo metal-organic framework-decorated multi-walled carbon nanotube (FeNiCo MOF-MWCNT) composite nanomaterial were investigated for the first time. The nanocomposite was synthesized and characterized using Scanning Electron Microscopy (SEM), SEM-Mapping, SEM-EDS, XRD, and FT-IR techniques. Its enzyme-mimicking activity was evaluated using a colorimetric, non-enzymatic H₂O₂ biosensor with 3,3',5,5'-Tetramethylbenzidine (TMB) as the substrate. The biosensor comprises optimized amounts of FeNiCo MOF-MWCNT and TMB. Upon H₂O₂ addition, the nanocomposite mimics peroxidase activity by reducing H₂O₂ to H₂O, while oxidizing TMB to its blue-colored form, TMB(ox), showing absorbance at 654 nm. After optimizing conditions, the biosensor exhibited a linear response to H₂O₂ concentrations ranging from 0.1 mM to 12 mM. It also demonstrated high selectivity, with negligible interference from substances like KCl, ascorbic acid, urea, and NaCl. Accuracy tests using commercial H₂O₂ disinfectant showed results between 100% and 103%, confirming the biosensor's reliability for practical applications.

Kaynakça

  • X. Zhong, H. Xia, W. Huang, Z. Li, and Y. Jiang, “Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis,” Chem. Eng. J., vol. 381, pp. 122758, 2020.
  • J. Wang et al., “Zr(IV)-based metal-organic framework nanocomposites with enhanced peroxidase-like activity as a colorimetric sensing platform for sensitive detection of hydrogen peroxide and phenol,” Environ. Res., vol. 203, pp. 111818, 2022.
  • J. Wu et al., “Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II),” Chem. Soc. Rev., vol. 48, no. 4, pp. 1004–1076, 2019.
  • Y. M. Wang et al., “Enhancement of the Intrinsic Peroxidase-Like Activity of Graphitic Carbon Nitride Nanosheets by ssDNAs and Its Application for Detection of Exosomes,” Anal. Chem., vol. 89, no. 22, pp. 12327–12333, 2017.
  • Y. Liu et al., “Ionic Functionalization of Hydrophobic Colloidal Nanoparticles to Form Ionic Nanoparticles with Enzymelike Properties,” J. Am. Chem. Soc., vol. 137, no. 47, pp. 14952–14958, 2015.
  • I. Nath, J. Chakraborty, and F. Verpoort, “Metal organic frameworks mimicking natural enzymes: a structural and functional analogy,” Chem. Soc. Rev., vol. 45, no. 15, pp. 4127–4170, 2016.
  • P. Liebing and N. Kulak, “Metal–Organic Frameworks as Enzyme Mimics,” Encycl. Inorg. Bioinorg. Chem., pp. 1–22, 2021.
  • H. F. Kıyıkçı, O. Avcı, Y. Tepeli Büyüksünetçi, S. Timur, and Ü. Anık, “Oxidase mimicking Co/2Fe MOF included biosensor for sialic acid detection,” Talanta, vol. 254, pp. 124166, 2023.
  • B. Perk, Y. Tepeli Büyüksünetçi, S. Bachraoui Bouzaien, M. F. Diouani, and Ü. Anik, “Fabrication of metal–organic framework based electrochemical Leishmania immunosensor,” Microchem. J., vol. 192, pp. 108958, 2023.
  • D. Li, A. Yadav, H. Zhou, K. Roy, P. Thanasekaran, and C. Lee, “Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review,” Glob. Challenges, vol. 8, pp. 2, 2024.
  • H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science (80-. )., vol. 341, pp. 6149, 2013.
  • X. Niu et al., “Metal-organic framework based nanozymes: promising materials for biochemical analysis,” 11338 | Chem. Commun, vol. 56, pp. 11338, 2020.
  • X. Cheng, Y. Xie, G. Li, Z. Zheng, and Q. Kuang, “Tailoring metal sites of FeCo-MOF nanozymes for significantly enhanced peroxidase-like activity,” Inorg. Chem. Front., vol. 10, no. 8, pp. 2335–2343, 2023.
  • Z. Liu, Y. Liu, L. Wu, T. Shi, Q. Feng, and J. Chen, “High-performance bimetallic Fe-Co-MOF@MWCNT composite electrochemical sensor for sensitive detection of Pb2+ and Cd2+,” Microchem. J., vol. 209, p. 112813, 2025.
  • M. G. Radhika et al., “Electrochemical studies on Ni, Co & Ni/Co-MOFs for high-performance hybrid supercapacitors,” Mater. Res. Express, vol. 7, no. 5, p. 054003, 2020.
  • C. Zhang et al., “Preparation and application of Co3O4-Ni-MOF/MWCNTs hybrid for supercapacitor,” Ionics (Kiel)., vol. 27, no. 8, pp. 3543–3551, 2021.
  • H. Zhao, Y. Chen, Q. Peng, Q. Wang, and G. Zhao, “Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and  OH generation in solar photo–electro–Fenton process,” Appl. Catal. B Environ., vol. 203, pp. 127–137, 2017.
  • H. Wei and E. Wang, “Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes,” Chem. Soc. Rev., vol. 42, no. 14, pp. 6060–6093, 2013.
  • L. Gao et al., “Intrinsic peroxidase-like activity of ferromagnetic nanoparticles,” Nat. Nanotechnol., vol. 2, no. 9, pp. 577–583, 2007.
  • S. Sadiq et al., “A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects,” Heliyon, vol. 10, no. 3, p. e25521, 2024.
  • M. Almunla, Y. Tepeli Büyüksünetçi, O. Akpolat, and Ü. Anık, “Development of Apple Tissue Based Biocathode and MWCNT−Pt−Au Nanomaterial Based Bioanode Biofuel Cell,” Electroanalysis, vol. 33, no. 4, pp. 873–881, 2021.
  • L. F. Yang, Z. Fu, J. Xie, and Z. Ding, “Portable sensing of hydrogen peroxide using MOF-based nanozymes,” Food Res. Int., vol. 197, p. 115272, 2024.
  • H. Qu et al., “Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution,” J. Colloid Interface Sci., vol. 572, pp. 83–90, 2020.
  • F. T. Alshorifi, S. M. El Dafrawy, and A. I. Ahmed, “Fe/Co-MOF Nanocatalysts: Greener Chemistry Approach for the Removal of Toxic Metals and Catalytic Applications,” ACS Omega, vol. 7, no. 27, pp. 23421–23444, 2022.
  • J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry,” Crit. Rev. Environ. Sci. Technol., vol. 36, no. 1, pp. 1–84, 2006.
  • E. Neyens and J. Baeyens, “A review of classic Fenton’s peroxidation as an advanced oxidation technique,” J. Hazard. Mater., vol. 98, no. 1–3, pp. 33–50, 2003.
  • H. Wang et al., “Fe3O4–MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation,” RSC Adv., vol. 4, no. 86, pp. 45809–45815, 2014.
  • Y. Wen et al., " Bifunctional enzyme-mimicking metal-organic frameworks for sensitive acetylcholine analysis" Talanta, vol. 275, pp.126112, 2024.
  • T. K. Ngan Tran et al., “Photocatalytic degradation of Rhodamine B in aqueous phase by bimetallic metal-organic framework M/Fe-MOF (M = Co, Cu, and Mg),” Open Chem., vol. 20, no. 1, pp. 52–60, 2022.

FeNiCo METAL-ORGANİK ÇERÇEVE İLE MODİFİYE EDİLMİŞ MWCNT KOMPOZİT NANOMALZEMENİN PEROKSİDAZ ENZİM TAKLİT ÖZELLİKLERİNİN İNCELENMESİ

Yıl 2025, Cilt: 11 Sayı: 2, 1 - 9, 31.12.2025
https://doi.org/10.22531/muglajsci.1687954

Öz

Enzim taklit eden malzemeler, doğal enzimlerin işlevlerini taklit ederek daha dayanıklı, ekonomik ve çevre dostu alternatifler sunar; bu da biyoteknoloji ve endüstriyel uygulamalar için oldukça önemlidir. Bu çalışmada, FeNiCo metal-organik çerçeve modifiye çok duvarlı karbon nanotüp (FeNiCo MOF-MWCNT) kompozit nanomalzemenin, peroksidaz enzim benzeri özellikleri ilk kez incelenmiştir. Nanokompozit, Taramalı Elektron Mikroskobu (SEM), SEM Haritalama, SEM-EDS, X-Işını Difraksiyonu (XRD) ve Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) teknikleriyle karakterize edilmiştir. FeNiCo MOF-MWCNT’nin enzim taklit özelliği, substrat olarak 3,3',5,5'-Tetrametilbenzidin (TMB) kullanılan enzim içermeyen kolorimetrik bir H₂O₂ biyosensörü ile incelenmiştir. Biyosensör çözeltisi, optimize edilmiş miktarda FeNiCo MOF-MWCNT ve TMB içermektedir. Çözeltiye H₂O₂ eklendiğinde, nanokompozit H₂O₂’yi suya indirgerken peroksidaz enzim aktivitesini taklit eder ve aynı anda TMB’yi oksitler, mavi renkli TMB(ox) formuna dönüşür; bu form 654 nm’de absorbsiyon gösterir. Deneysel koşullar optimize edildikten sonra biyosensör, 0.1 mM ile 12 mM arasındaki H₂O₂ derişimlerinde doğrusal yanıt vermiştir. Geliştirilen enzimsiz biyosensör üzerinde, KCl, askorbik asit, üre ve NaCl gibi girişimci maddelerden kaynaklı anlamlı bir etki gözlemlenmemiştir. Ticari H₂O₂ dezenfektanlarıyla yapılan doğruluk testlerinde sonuçlar %100–103 arasında bulunmuştur.

Kaynakça

  • X. Zhong, H. Xia, W. Huang, Z. Li, and Y. Jiang, “Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis,” Chem. Eng. J., vol. 381, pp. 122758, 2020.
  • J. Wang et al., “Zr(IV)-based metal-organic framework nanocomposites with enhanced peroxidase-like activity as a colorimetric sensing platform for sensitive detection of hydrogen peroxide and phenol,” Environ. Res., vol. 203, pp. 111818, 2022.
  • J. Wu et al., “Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II),” Chem. Soc. Rev., vol. 48, no. 4, pp. 1004–1076, 2019.
  • Y. M. Wang et al., “Enhancement of the Intrinsic Peroxidase-Like Activity of Graphitic Carbon Nitride Nanosheets by ssDNAs and Its Application for Detection of Exosomes,” Anal. Chem., vol. 89, no. 22, pp. 12327–12333, 2017.
  • Y. Liu et al., “Ionic Functionalization of Hydrophobic Colloidal Nanoparticles to Form Ionic Nanoparticles with Enzymelike Properties,” J. Am. Chem. Soc., vol. 137, no. 47, pp. 14952–14958, 2015.
  • I. Nath, J. Chakraborty, and F. Verpoort, “Metal organic frameworks mimicking natural enzymes: a structural and functional analogy,” Chem. Soc. Rev., vol. 45, no. 15, pp. 4127–4170, 2016.
  • P. Liebing and N. Kulak, “Metal–Organic Frameworks as Enzyme Mimics,” Encycl. Inorg. Bioinorg. Chem., pp. 1–22, 2021.
  • H. F. Kıyıkçı, O. Avcı, Y. Tepeli Büyüksünetçi, S. Timur, and Ü. Anık, “Oxidase mimicking Co/2Fe MOF included biosensor for sialic acid detection,” Talanta, vol. 254, pp. 124166, 2023.
  • B. Perk, Y. Tepeli Büyüksünetçi, S. Bachraoui Bouzaien, M. F. Diouani, and Ü. Anik, “Fabrication of metal–organic framework based electrochemical Leishmania immunosensor,” Microchem. J., vol. 192, pp. 108958, 2023.
  • D. Li, A. Yadav, H. Zhou, K. Roy, P. Thanasekaran, and C. Lee, “Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review,” Glob. Challenges, vol. 8, pp. 2, 2024.
  • H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science (80-. )., vol. 341, pp. 6149, 2013.
  • X. Niu et al., “Metal-organic framework based nanozymes: promising materials for biochemical analysis,” 11338 | Chem. Commun, vol. 56, pp. 11338, 2020.
  • X. Cheng, Y. Xie, G. Li, Z. Zheng, and Q. Kuang, “Tailoring metal sites of FeCo-MOF nanozymes for significantly enhanced peroxidase-like activity,” Inorg. Chem. Front., vol. 10, no. 8, pp. 2335–2343, 2023.
  • Z. Liu, Y. Liu, L. Wu, T. Shi, Q. Feng, and J. Chen, “High-performance bimetallic Fe-Co-MOF@MWCNT composite electrochemical sensor for sensitive detection of Pb2+ and Cd2+,” Microchem. J., vol. 209, p. 112813, 2025.
  • M. G. Radhika et al., “Electrochemical studies on Ni, Co & Ni/Co-MOFs for high-performance hybrid supercapacitors,” Mater. Res. Express, vol. 7, no. 5, p. 054003, 2020.
  • C. Zhang et al., “Preparation and application of Co3O4-Ni-MOF/MWCNTs hybrid for supercapacitor,” Ionics (Kiel)., vol. 27, no. 8, pp. 3543–3551, 2021.
  • H. Zhao, Y. Chen, Q. Peng, Q. Wang, and G. Zhao, “Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and  OH generation in solar photo–electro–Fenton process,” Appl. Catal. B Environ., vol. 203, pp. 127–137, 2017.
  • H. Wei and E. Wang, “Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes,” Chem. Soc. Rev., vol. 42, no. 14, pp. 6060–6093, 2013.
  • L. Gao et al., “Intrinsic peroxidase-like activity of ferromagnetic nanoparticles,” Nat. Nanotechnol., vol. 2, no. 9, pp. 577–583, 2007.
  • S. Sadiq et al., “A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects,” Heliyon, vol. 10, no. 3, p. e25521, 2024.
  • M. Almunla, Y. Tepeli Büyüksünetçi, O. Akpolat, and Ü. Anık, “Development of Apple Tissue Based Biocathode and MWCNT−Pt−Au Nanomaterial Based Bioanode Biofuel Cell,” Electroanalysis, vol. 33, no. 4, pp. 873–881, 2021.
  • L. F. Yang, Z. Fu, J. Xie, and Z. Ding, “Portable sensing of hydrogen peroxide using MOF-based nanozymes,” Food Res. Int., vol. 197, p. 115272, 2024.
  • H. Qu et al., “Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution,” J. Colloid Interface Sci., vol. 572, pp. 83–90, 2020.
  • F. T. Alshorifi, S. M. El Dafrawy, and A. I. Ahmed, “Fe/Co-MOF Nanocatalysts: Greener Chemistry Approach for the Removal of Toxic Metals and Catalytic Applications,” ACS Omega, vol. 7, no. 27, pp. 23421–23444, 2022.
  • J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry,” Crit. Rev. Environ. Sci. Technol., vol. 36, no. 1, pp. 1–84, 2006.
  • E. Neyens and J. Baeyens, “A review of classic Fenton’s peroxidation as an advanced oxidation technique,” J. Hazard. Mater., vol. 98, no. 1–3, pp. 33–50, 2003.
  • H. Wang et al., “Fe3O4–MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation,” RSC Adv., vol. 4, no. 86, pp. 45809–45815, 2014.
  • Y. Wen et al., " Bifunctional enzyme-mimicking metal-organic frameworks for sensitive acetylcholine analysis" Talanta, vol. 275, pp.126112, 2024.
  • T. K. Ngan Tran et al., “Photocatalytic degradation of Rhodamine B in aqueous phase by bimetallic metal-organic framework M/Fe-MOF (M = Co, Cu, and Mg),” Open Chem., vol. 20, no. 1, pp. 52–60, 2022.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Spektrometri, Sensör Teknolojisi , Analitik Kimya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Yudum Tepeli Büyüksünetçi 0000-0002-4717-7933

Gönderilme Tarihi 30 Nisan 2025
Kabul Tarihi 14 Temmuz 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Tepeli Büyüksünetçi, Y. (2025). INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL. Mugla Journal of Science and Technology, 11(2), 1-9. https://doi.org/10.22531/muglajsci.1687954
AMA 1.Tepeli Büyüksünetçi Y. INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL. MJST. 2025;11(2):1-9. doi:10.22531/muglajsci.1687954
Chicago Tepeli Büyüksünetçi, Yudum. 2025. “INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL”. Mugla Journal of Science and Technology 11 (2): 1-9. https://doi.org/10.22531/muglajsci.1687954.
EndNote Tepeli Büyüksünetçi Y (01 Aralık 2025) INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL. Mugla Journal of Science and Technology 11 2 1–9.
IEEE [1]Y. Tepeli Büyüksünetçi, “INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL”, MJST, c. 11, sy 2, ss. 1–9, Ara. 2025, doi: 10.22531/muglajsci.1687954.
ISNAD Tepeli Büyüksünetçi, Yudum. “INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL”. Mugla Journal of Science and Technology 11/2 (01 Aralık 2025): 1-9. https://doi.org/10.22531/muglajsci.1687954.
JAMA 1.Tepeli Büyüksünetçi Y. INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL. MJST. 2025;11:1–9.
MLA Tepeli Büyüksünetçi, Yudum. “INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL”. Mugla Journal of Science and Technology, c. 11, sy 2, Aralık 2025, ss. 1-9, doi:10.22531/muglajsci.1687954.
Vancouver 1.Tepeli Büyüksünetçi Y. INVESTIGATION OF PEROXIDASE-MIMICKING PROPERTIES OF FeNiCo METAL-ORGANIC FRAMEWORK DECORATED MWCNT COMPOSITE NANOMATERIAL. MJST [Internet]. 01 Aralık 2025;11(2):1-9. Erişim adresi: https://izlik.org/JA27WR32LM

8805
Mugla Journal of Science and Technology (MJST) dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.