Araştırma Makalesi
BibTex RIS Kaynak Göster

DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION

Yıl 2025, Cilt: 11 Sayı: 2, 10 - 20, 31.12.2025
https://doi.org/10.22531/muglajsci.1707304

Öz

The rapid growth in global mobile data traffic demands the development of advanced communication systems such as the sixth generation (6G). Integrated sensing and communication (ISAC) is recognized as a pivotal technology within the 6G, enabling simultaneous information transmission and environmental awareness to enhance spectrum efficiency and fulfill the requirements of future applications. This study presents a thorough cross-layer framework for ISAC that integrates physical and medium access control (MAC) layer processes, overcoming the limitations of traditional, isolated approaches. The framework incorporates deep learning models for real-time signal-to-noise ratio (SNR) prediction and flow control mechanism, leveraging fuzzy logic to dynamically adjust automatic repeat request (ARQ) mechanisms based on SNR, bandwidth, and delay. Through detailed analyses of fuzzy control surfaces, the study proves the ability of this system in optimizations of resource allocation, adaptation in a dynamic environment, and achieving a balance in reliability and efficiency. Results confirm that SNR dominates ARQ decision-making, while bandwidth and delay significantly influence performance under certain conditions. These findings validate capability of the fuzzy inference system to enable intelligent communication systems and establish ISAC as a foundational component for 6G networks.

Kaynakça

  • Ericsson, "Ericsson Mobility Report", Ericsson Reports and Papers, 2024. https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2024 (accessed January 7, 2025).
  • Lu, S. and Liu, F., "Integrated Sensing and Communications: Recent Advances and Ten Open Challenges", IEEE Internet of Things Journal, Vol. 11, pp. 19094–19120, 2024.
  • Dong, F. and Liu, F., "Sensing as a Service in 6G Perceptive Networks: A Unified Framework for ISAC Resource Allocation", IEEE Transactions on Wireless Communications, Vol. 22, pp. 3522–3536, 2023.
  • Jiang, W. and Zhou, Q., "Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review", IEEE Communications Surveys and Tutorials, 2024.
  • Wang, C.X. and You, X., "On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds", IEEE Communications Surveys and Tutorials, Vol. 25, pp. 905–974, 2023.
  • Wymeersch, H. and Shrestha, D., "Integration of Communication and Sensing in 6G: A Joint Industrial and Academic Perspective", IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. –, 2021.
  • Wang, J. and Varshney, N., "Integrated Sensing and Communication: Enabling Techniques, Applications, Tools and Data Sets, Standardization, and Future Directions", IEEE Internet of Things Journal, Vol. 9, pp. 23416–23440, 2022.
  • Liu, R. and Li, X., "Research on Reliability Assurance Mechanism of MAC Layer Control Messages in Wireless Ad Hoc Networks", Advances in Guidance, Navigation and Control, Vol. 644, pp. 5301–5310, 2022.
  • Sharma, P. and Nair, J., "Adaptive Flow-Level Scheduling for the IoT MAC", Proceedings of 2020 International Conference on Communication Systems & Networks (COMSNETS), pp. 515–518, 2020.
  • Rubavathy, A.H. and Sundar, S., "Performance Implications of Channel Aware Cooperative Probing-GBN ARQ in the Context of Wireless Body Area Networks", Results in Engineering, Vol. 23, 2024.
  • Bulo, Y. and Sonalika, A., "Adaptive Automatic Repeat Request (AdARQ) Protocol to Improve the Throughput Characteristic of the Time-Varying Wireless Channel", Journal of The Institution of Engineers (India): Series B, Vol. 105, pp. 53–61, 2024.
  • Loli, R.C. and Dizdar, O., "Hybrid Automatic Repeat Request for Downlink Rate-Splitting Multiple Access", IEEE Transactions on Wireless Communications, 2024.
  • Matzner, R. and Englberger, F., "An SNR Estimation Algorithm Using Fourth-Order Moments", Proceedings of 1994 IEEE International Symposium on Information Theory, p. 119, 1994.
  • Abeida, H. and Al-Nafouri, T.Y., "Data-Aided SNR Estimation in Time-Variant Rayleigh Fading Channels", Proceedings of 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5, 2010.

DERİN ÖĞRENME YARDIMLI AKIŞ KONTROL MEKANİZMASI SEÇİMİ

Yıl 2025, Cilt: 11 Sayı: 2, 10 - 20, 31.12.2025
https://doi.org/10.22531/muglajsci.1707304

Öz

Küresel mobil veri trafiğindeki hızlı artış, altıncı nesil (6G) gibi ileri düzey iletişim sistemlerinin geliştirilmesini zorunlu kılmaktadır. Entegre algılama ve iletişim (ISAC), 6G kapsamında eş zamanlı bilgi iletimi ve çevresel farkındalık sağlayarak spektrum verimliliğini artıran ve gelecekteki uygulamaların gereksinimlerini karşılayan temel bir teknoloji olarak öne çıkmaktadır. Bu çalışma, fiziksel katman ile ortam erişim kontrolü (MAC) katmanındaki süreçleri entegre eden katmanlar arası kapsamlı bir ISAC çerçevesi sunmaktadır. Bu yapı, geleneksel ve birbirinden bağımsız yaklaşımların sınırlamalarını aşmayı hedeflemektedir. Sunulan çerçevede, gerçek zamanlı sinyal-gürültü oranı (SNR) tahmini ve akış kontrol mekanizması için derin öğrenme modelleri kullanılmaktadır. Ayrıca, SNR, bant genişliği ve gecikme parametrelerine dayalı olarak otomatik tekrar isteği (ARQ) mekanizmalarının dinamik şekilde uyarlanması, bulanık mantık sistemiyle sağlanmaktadır. Bulanık kontrol yüzeylerine ilişkin ayrıntılı analizler, sistemin kaynak tahsisi optimizasyonu, dinamik ortamlara adaptasyon ve güvenilirlik-verimlilik dengesi sağlama konularındaki etkinliğini ortaya koymaktadır. Elde edilen sonuçlar, ARQ karar süreçlerinde SNR’nin belirleyici bir unsur olduğunu; bant genişliği ve gecikmenin ise belirli koşullarda performans üzerinde önemli etkilere sahip olduğunu göstermektedir. Bu bulgular, bulanık çıkarım sisteminin akıllı iletişim sistemlerini mümkün kılma yeteneğini doğrulamakta ve ISAC teknolojisini 6G ağlarının temel bileşenlerinden biri olarak konumlandırmaktadır.

Kaynakça

  • Ericsson, "Ericsson Mobility Report", Ericsson Reports and Papers, 2024. https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2024 (accessed January 7, 2025).
  • Lu, S. and Liu, F., "Integrated Sensing and Communications: Recent Advances and Ten Open Challenges", IEEE Internet of Things Journal, Vol. 11, pp. 19094–19120, 2024.
  • Dong, F. and Liu, F., "Sensing as a Service in 6G Perceptive Networks: A Unified Framework for ISAC Resource Allocation", IEEE Transactions on Wireless Communications, Vol. 22, pp. 3522–3536, 2023.
  • Jiang, W. and Zhou, Q., "Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review", IEEE Communications Surveys and Tutorials, 2024.
  • Wang, C.X. and You, X., "On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds", IEEE Communications Surveys and Tutorials, Vol. 25, pp. 905–974, 2023.
  • Wymeersch, H. and Shrestha, D., "Integration of Communication and Sensing in 6G: A Joint Industrial and Academic Perspective", IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. –, 2021.
  • Wang, J. and Varshney, N., "Integrated Sensing and Communication: Enabling Techniques, Applications, Tools and Data Sets, Standardization, and Future Directions", IEEE Internet of Things Journal, Vol. 9, pp. 23416–23440, 2022.
  • Liu, R. and Li, X., "Research on Reliability Assurance Mechanism of MAC Layer Control Messages in Wireless Ad Hoc Networks", Advances in Guidance, Navigation and Control, Vol. 644, pp. 5301–5310, 2022.
  • Sharma, P. and Nair, J., "Adaptive Flow-Level Scheduling for the IoT MAC", Proceedings of 2020 International Conference on Communication Systems & Networks (COMSNETS), pp. 515–518, 2020.
  • Rubavathy, A.H. and Sundar, S., "Performance Implications of Channel Aware Cooperative Probing-GBN ARQ in the Context of Wireless Body Area Networks", Results in Engineering, Vol. 23, 2024.
  • Bulo, Y. and Sonalika, A., "Adaptive Automatic Repeat Request (AdARQ) Protocol to Improve the Throughput Characteristic of the Time-Varying Wireless Channel", Journal of The Institution of Engineers (India): Series B, Vol. 105, pp. 53–61, 2024.
  • Loli, R.C. and Dizdar, O., "Hybrid Automatic Repeat Request for Downlink Rate-Splitting Multiple Access", IEEE Transactions on Wireless Communications, 2024.
  • Matzner, R. and Englberger, F., "An SNR Estimation Algorithm Using Fourth-Order Moments", Proceedings of 1994 IEEE International Symposium on Information Theory, p. 119, 1994.
  • Abeida, H. and Al-Nafouri, T.Y., "Data-Aided SNR Estimation in Time-Variant Rayleigh Fading Channels", Proceedings of 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5, 2010.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Örüntü Tanıma, Ağ Mühendisliği, Kablosuz Haberleşme Sistemleri ve Teknolojileri (Mikro Dalga ve Milimetrik Dalga dahil), Veri İletişimleri
Bölüm Araştırma Makalesi
Yazarlar

Merih Leblebici 0000-0002-7709-2906

Ali Çalhan 0000-0002-5798-3103

Gönderilme Tarihi 27 Mayıs 2025
Kabul Tarihi 7 Eylül 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Leblebici, M., & Çalhan, A. (2025). DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION. Mugla Journal of Science and Technology, 11(2), 10-20. https://doi.org/10.22531/muglajsci.1707304
AMA Leblebici M, Çalhan A. DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION. MJST. Aralık 2025;11(2):10-20. doi:10.22531/muglajsci.1707304
Chicago Leblebici, Merih, ve Ali Çalhan. “DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION”. Mugla Journal of Science and Technology 11, sy. 2 (Aralık 2025): 10-20. https://doi.org/10.22531/muglajsci.1707304.
EndNote Leblebici M, Çalhan A (01 Aralık 2025) DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION. Mugla Journal of Science and Technology 11 2 10–20.
IEEE M. Leblebici ve A. Çalhan, “DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION”, MJST, c. 11, sy. 2, ss. 10–20, 2025, doi: 10.22531/muglajsci.1707304.
ISNAD Leblebici, Merih - Çalhan, Ali. “DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION”. Mugla Journal of Science and Technology 11/2 (Aralık2025), 10-20. https://doi.org/10.22531/muglajsci.1707304.
JAMA Leblebici M, Çalhan A. DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION. MJST. 2025;11:10–20.
MLA Leblebici, Merih ve Ali Çalhan. “DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION”. Mugla Journal of Science and Technology, c. 11, sy. 2, 2025, ss. 10-20, doi:10.22531/muglajsci.1707304.
Vancouver Leblebici M, Çalhan A. DEEP LEARNING AIDED FLOW CONTROL MECHANISM SELECTION. MJST. 2025;11(2):10-2.

8805
Mugla Journal of Science and Technology (MJST) dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.