Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇEŞİTLİ MİKROBİYAL YAKIT HÜCRESİ TASARIMLARINDA METİLEN MAVİSİ ARACISI KULLANILARAK SACCHAROMYCES CEREVISIAE TARAFINDAN BİYOELEKTRİK ÜRETİMİ

Yıl 2025, Cilt: 11 Sayı: 2, 49 - 55, 31.12.2025
https://doi.org/10.22531/muglajsci.1737770

Öz

Elektroaktif mikroorganizmaların ve elektron transfer mekanizmalarının keşfi, biyoelektrokimyasal atıksu arıtımı için yeni olanaklar açmıştır. Mikrobiyal yakıt hücreleri (MFC'ler), mikrobiyal metabolizma yoluyla organik substratları dönüştürerek elektrik üretir. Bu çalışmada, Saccharomyces cerevisiae, anot substratı olarak evsel atıksu kullanan çeşitli MFC tasarımlarının performansını değerlendirmek için biyokatalizör olarak kullanılmıştır. Reaktör konfigürasyonunun ve metilen mavisinin redoks aracısı olarak eklenmesinin voltaj üretimi, güç yoğunluğu ve kimyasal oksijen ihtiyacı (KOİ) giderimi üzerindeki etkileri araştırılmıştır. İki kesikli mod reaktör test edilmiştir: iç içe geçmiş silindirik çift odacıklı MFC (NDMFC) ve silindirik H tipi MFC (CHMFC). Elde edilen maksimum güç yoğunlukları NDMFC için 3,22 mW/m² ve CHMFC için 3,35 mW/m² iken, KOİ giderim verimlilikleri sırasıyla %90,33 ve %91,44 olmuştur. Tüm çalışma koşulları sabit tutulduğundan, gözlemlenen performans değişimleri reaktör tasarımındaki farklılıklara bağlanmıştır. Genel olarak, bu çalışma mikrobiyal yakıt hücrelerinde elektron transferini kolaylaştıran aracıların önemini vurgulamayı amaçlamaktadır. Metilen mavisinin güç üretimi üzerindeki etkisi, farklı reaktör konfigürasyonları kullanılarak etkili bir biçimde incelenmiştir.

Kaynakça

  • Mohamed, H. O., Obaid, M., Khalil, K. A. and Barakat, N. A. “Power generation from unconditioned industrial wastewaters using commercial membranes-based microbial fuel cells”, International Journal of Hydrogen Energy, 41(7), 4251-4263, 2016.
  • Ishaq, A., Said, M. I. M., Azman, S. B., Houmsi, M. R, Isah, A. S., Jagun, Z. T., Mohammad, S. J., Bello, A. A. D. and Abubakar, U. A. “The influence of various chemical oxygen demands on microbial fuel cells performance using leachate as a substrate”, Environmental Science and Pollution Research, 1-16, 2024.
  • Kumar, G., Kim, S. H., Lay, C. H. and Ponnusamy, V. K. “Recent developments on alternative fuels, energy and environment for sustainability”, Bioresource Technology, 317, 124010, 2020.
  • Rossi, R. and Logan, B. E. Impact of reactor configuration on pilot-scale microbial fuel cell performance, Water Research, 225, 119179, 2022.
  • D. Recio-Garrido, Adekunle, A., Perrier, M., Raghavan, V. and Tartakovsky, B. “Wastewater treatment and online chemical oxygen demand estimation in a cascade of microbial fuel cells”, Industrial & Engineering Chemistry Research 56(44), 12471-12478, 2017.
  • Shabani, F., Philamore, H. and Matsuno, F. “An energy-autonomous chemical oxygen demand sensor using a microbial fuel cell and embedded machine learning”, IEEE Access 9, 108689-108701, 2021.
  • Rabaey, K. and Verstraete, W. “Microbial fuel cells: Novel biotechnology for energy generation”, Trends in Biotechnology, 23(6), 291-298, 2005.
  • Zhang, X., He, W., Ren, L., Stager, J., Evans, P. J. and Logan, B. E. “COD removal characteristics in air-cathode microbial fuel cells”, Bioresource Technology, 176, 23-31, 2015.
  • Janicek, A., Fan, Y. and Liu, H. “Design of microbial fuel cells for practical application: A review and analysis of scale-up studies”, Biofuels, 5(1), 79-92, 2014.
  • Sun, H., Xu, S., Zhuang, G. and Zhuang, X. “Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review”, Journal of Environmental Sciences, 39, 242-248, 2016.
  • Zafar, H., Peleato, N. and Roberts, D. “A comparison of reactor configuration using a fruit waste fed two-stage anaerobic up-flow leachate reactor microbial fuel cell and a single-stage microbial fuel cell”, Bioresource Technology, 374, 128778, 2023.
  • Kandpal, R., Shahadat, M., Ali, S. W., Hu, C. and Ahammad, S. Z. “Material specific enrichment of electroactive microbes on polyaniline-supported anodes in a single chamber multi-anode assembly microbial fuel cell”, Materials Research Bulletin, 157, 111983, 2023.
  • Mohamed, H. O., Obaid, M., Khalil, K. A. and Barakat, N. A., “Power generation from unconditioned industrial wastewaters using commercial membranes-based microbial fuel cells”, International Journal of Hydrogen Energy, 41(7), 4251-4263, 2016.
  • Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D. and Li, B. “A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment”, International Journal of Hydrogen Energy, 36(1), 876-884, 2011.
  • Christwardana, M., Joelianingsih, J., and Yoshi, L. A. “Performance of yeast microbial fuel cell integrated with sugarcane bagasse fermentation for cod reduction and electricity generation”, Bulletin of Chemical Reaction Engineering & Catalysis, 16(3), 446-458, 2021.
  • Christwardana, M., Joelianingsih, J., and Yoshi, L. A, “Synergistic of yeast Saccharomyces cerevisiae and glucose oxidase enzyme as co-biocatalyst of enzymatic microbial fuel cell (EMFC) in converting sugarcane bagasse extract into electricity”, Journal of Electrochemical Science and Engineering, 13(2), 321-332, 2023.
  • Zhi, W., Ge, Z., He, Z. and Zhang, H. “Methods for understanding microbial community structures and functions in microbial fuel cells: A review”, Bioresource Technology, 171, 461-468, 2014.
  • Permana, D., Rosdianti, D., Ishmayana, S., Rachman, S. D., Putra, H. E., Rahayuningwulan, D. and Hariyadi, H. R. “Preliminary investigation of electricity production using dual chamber microbial fuel cell (dcMFC) with Saccharomyces cerevisiae as biocatalyst and methylene blue as an electron mediator”, Procedia Chemistry, 17, 36-43, 2015.
  • Wang, X., Zhang, Y., Zhang, C., Li, J., Xue, M. and Xia, W. “Influence of electrodes configuration on hydraulic characteristics of constructed wetland–microbial fuel cell systems using graphite rods and plates as electrodes”, Sustainability, 15(8), 6397, 2023.
  • Wang, Z. and Lim, B. “Electric power generation from sediment microbial fuel cells with graphite rod array anode”, Environmental Engineering Research, 25(2), 238-242, 2020.
  • Gomes, A. S., La Rotta, C. E., Nitschke, M. and González, E. R. “Evaluation of current output in Pseudomonas aeruginosa microbial fuel cells using glycerol as susbtrate and Nafion 117 as proton exchange membrane”, ECS Transactions, 41(1), 2011-2017, 2011.
  • Shirpay, A. “Effects of electrode size on the power generation of the microbial fuel cell by Saccharomyces cerevisiae”, Ionics, 27(9), 3967-3973, 2021.
  • Christwardana, M., Fauziah, Z. and Sarjono, P. R. “Investigating the influence of Saccharomyces cerevisiae on microbial fuel cell performance through bioelectrochemical and biochemical approaches under varied operating conditions”, Biomass Conversion and Biorefinery, 15, 8189–8202, 2025.
  • Rahimnejad, M., Najafpour, G. D., Ghoreyshi, A. A., Talebnia, F., Premier, G. C., Bakeri, G., Kim, J. R. and Oh, S. E. “Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture”, Journal of Microbiology, 50, 575-580, 2012.
  • Rahimnejad, M., Najafpour, G. D., Ghoreyshi, A. A., Shakeri, M., and Zare, H. “Methylene blue as electron promoters in microbial fuel cell”, International Journal of Hydrogen Energy, 36, 13335-13341, 2011.
  • Sahu, O. “Sustainable and clean treatment of industrial wastewater with microbial fuel cell”, Results in Engineering, 4, 100053, 2019.
  • Chala, G. T. and Ravichanthiran, S. “A study on microbial fuel cell (MFC) with graphite electrode to power underwater monitoring devices”, International Journal of Mechanical and Technology, 9(9), 98-105, 2018.
  • Pişkin, E. D. and Genç, N. “Mikrobiyal yakıt hücresinde nişasta içerikli atığın oksidasyonu ile elektrik üretimi”, Journal of Advanced Research in Natural and Applied Sciences, 9(2), 291-300, 2023.
  • Rossi, R., Fedrigucci, A. and Setti, L. “Characterization of electron mediated microbial fuel cell by Saccharomyces cerevisiae”. Chemical Engineering Transactions, 43, 337-342, 2015.
  • Shrivastava, A., Pal, M. and Sharma, R. K. “Simultaneous production of bioethanol and bioelectricity in a membrane-less single-chambered yeast fuel cell by Saccharomyces cerevisiae and Pichia fermentans”, Arabian Journal for Science and Engineering, 47, 6763-6771, 2022.
  • Verma, M. and Mishra V. “Bioelectricity generation by microbial degradation of banana peel waste biomass in a dual-chamber S. cerevisiae-based microbial fuel cell”, Biomass and Bioenergy, 168, 106677, 2023.
  • Fan, L. and Zhang, L. “Enhancing the power generation and COD removal of microbial fuel cell with ZrP-modified proton exchange membrane”, International Journal of Electrochemical Science, 13(3), 2911-2920, 2018.
  • Juang, D. F., Yang, P. C. and Kuo, T. H. “Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells”, International Journal of Environmental Science and Technology, 9, 267-280, 2012.
  • Pişkin, E. D., Genç, N., Akay, R. G. “Simultaneous optimization of electric production, azo dye, and yeast wastewater treatment in microbial fuel cell: Selection of the most suitable optimal conditions by PROMETHEE”, Renewable Energy, 2024

BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS

Yıl 2025, Cilt: 11 Sayı: 2, 49 - 55, 31.12.2025
https://doi.org/10.22531/muglajsci.1737770

Öz

The discovery of electroactive microorganisms and their electron transfer mechanisms has opened new possibilities for bioelectrochemical wastewater treatment. Microbial fuel cells (MFCs) generate electricity by converting organic substrates through microbial metabolism. In this study, Saccharomyces cerevisiae was utilized as a biocatalyst to assess the performance of various MFC designs using domestic wastewater as the anode substrate. The effects of reactor configuration and the addition of methylene blue as a redox mediator on voltage generation, power density, and chemical oxygen demand (COD) removal were investigated. Two batch-mode reactors were tested: a nested cylindrical dual-chamber MFC (NDMFC) and a cylindrical H-type MFC (CHMFC). The maximum power densities achieved were 3.22 mW/m² for the NDMFC and 3.35 mW/m² for the CHMFC, while COD removal efficiencies were 90.33% and 91.44%, respectively. As all operational conditions were maintained constant, the observed performance variations were attributed to differences in reactor design. Overall, this study aimed to emphasize the importance of mediators that facilitate electron transfer in microbial fuel cells. The effect of methylene blue on power generation was effectively investigated using different reactor configurations.

Kaynakça

  • Mohamed, H. O., Obaid, M., Khalil, K. A. and Barakat, N. A. “Power generation from unconditioned industrial wastewaters using commercial membranes-based microbial fuel cells”, International Journal of Hydrogen Energy, 41(7), 4251-4263, 2016.
  • Ishaq, A., Said, M. I. M., Azman, S. B., Houmsi, M. R, Isah, A. S., Jagun, Z. T., Mohammad, S. J., Bello, A. A. D. and Abubakar, U. A. “The influence of various chemical oxygen demands on microbial fuel cells performance using leachate as a substrate”, Environmental Science and Pollution Research, 1-16, 2024.
  • Kumar, G., Kim, S. H., Lay, C. H. and Ponnusamy, V. K. “Recent developments on alternative fuels, energy and environment for sustainability”, Bioresource Technology, 317, 124010, 2020.
  • Rossi, R. and Logan, B. E. Impact of reactor configuration on pilot-scale microbial fuel cell performance, Water Research, 225, 119179, 2022.
  • D. Recio-Garrido, Adekunle, A., Perrier, M., Raghavan, V. and Tartakovsky, B. “Wastewater treatment and online chemical oxygen demand estimation in a cascade of microbial fuel cells”, Industrial & Engineering Chemistry Research 56(44), 12471-12478, 2017.
  • Shabani, F., Philamore, H. and Matsuno, F. “An energy-autonomous chemical oxygen demand sensor using a microbial fuel cell and embedded machine learning”, IEEE Access 9, 108689-108701, 2021.
  • Rabaey, K. and Verstraete, W. “Microbial fuel cells: Novel biotechnology for energy generation”, Trends in Biotechnology, 23(6), 291-298, 2005.
  • Zhang, X., He, W., Ren, L., Stager, J., Evans, P. J. and Logan, B. E. “COD removal characteristics in air-cathode microbial fuel cells”, Bioresource Technology, 176, 23-31, 2015.
  • Janicek, A., Fan, Y. and Liu, H. “Design of microbial fuel cells for practical application: A review and analysis of scale-up studies”, Biofuels, 5(1), 79-92, 2014.
  • Sun, H., Xu, S., Zhuang, G. and Zhuang, X. “Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review”, Journal of Environmental Sciences, 39, 242-248, 2016.
  • Zafar, H., Peleato, N. and Roberts, D. “A comparison of reactor configuration using a fruit waste fed two-stage anaerobic up-flow leachate reactor microbial fuel cell and a single-stage microbial fuel cell”, Bioresource Technology, 374, 128778, 2023.
  • Kandpal, R., Shahadat, M., Ali, S. W., Hu, C. and Ahammad, S. Z. “Material specific enrichment of electroactive microbes on polyaniline-supported anodes in a single chamber multi-anode assembly microbial fuel cell”, Materials Research Bulletin, 157, 111983, 2023.
  • Mohamed, H. O., Obaid, M., Khalil, K. A. and Barakat, N. A., “Power generation from unconditioned industrial wastewaters using commercial membranes-based microbial fuel cells”, International Journal of Hydrogen Energy, 41(7), 4251-4263, 2016.
  • Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D. and Li, B. “A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment”, International Journal of Hydrogen Energy, 36(1), 876-884, 2011.
  • Christwardana, M., Joelianingsih, J., and Yoshi, L. A. “Performance of yeast microbial fuel cell integrated with sugarcane bagasse fermentation for cod reduction and electricity generation”, Bulletin of Chemical Reaction Engineering & Catalysis, 16(3), 446-458, 2021.
  • Christwardana, M., Joelianingsih, J., and Yoshi, L. A, “Synergistic of yeast Saccharomyces cerevisiae and glucose oxidase enzyme as co-biocatalyst of enzymatic microbial fuel cell (EMFC) in converting sugarcane bagasse extract into electricity”, Journal of Electrochemical Science and Engineering, 13(2), 321-332, 2023.
  • Zhi, W., Ge, Z., He, Z. and Zhang, H. “Methods for understanding microbial community structures and functions in microbial fuel cells: A review”, Bioresource Technology, 171, 461-468, 2014.
  • Permana, D., Rosdianti, D., Ishmayana, S., Rachman, S. D., Putra, H. E., Rahayuningwulan, D. and Hariyadi, H. R. “Preliminary investigation of electricity production using dual chamber microbial fuel cell (dcMFC) with Saccharomyces cerevisiae as biocatalyst and methylene blue as an electron mediator”, Procedia Chemistry, 17, 36-43, 2015.
  • Wang, X., Zhang, Y., Zhang, C., Li, J., Xue, M. and Xia, W. “Influence of electrodes configuration on hydraulic characteristics of constructed wetland–microbial fuel cell systems using graphite rods and plates as electrodes”, Sustainability, 15(8), 6397, 2023.
  • Wang, Z. and Lim, B. “Electric power generation from sediment microbial fuel cells with graphite rod array anode”, Environmental Engineering Research, 25(2), 238-242, 2020.
  • Gomes, A. S., La Rotta, C. E., Nitschke, M. and González, E. R. “Evaluation of current output in Pseudomonas aeruginosa microbial fuel cells using glycerol as susbtrate and Nafion 117 as proton exchange membrane”, ECS Transactions, 41(1), 2011-2017, 2011.
  • Shirpay, A. “Effects of electrode size on the power generation of the microbial fuel cell by Saccharomyces cerevisiae”, Ionics, 27(9), 3967-3973, 2021.
  • Christwardana, M., Fauziah, Z. and Sarjono, P. R. “Investigating the influence of Saccharomyces cerevisiae on microbial fuel cell performance through bioelectrochemical and biochemical approaches under varied operating conditions”, Biomass Conversion and Biorefinery, 15, 8189–8202, 2025.
  • Rahimnejad, M., Najafpour, G. D., Ghoreyshi, A. A., Talebnia, F., Premier, G. C., Bakeri, G., Kim, J. R. and Oh, S. E. “Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture”, Journal of Microbiology, 50, 575-580, 2012.
  • Rahimnejad, M., Najafpour, G. D., Ghoreyshi, A. A., Shakeri, M., and Zare, H. “Methylene blue as electron promoters in microbial fuel cell”, International Journal of Hydrogen Energy, 36, 13335-13341, 2011.
  • Sahu, O. “Sustainable and clean treatment of industrial wastewater with microbial fuel cell”, Results in Engineering, 4, 100053, 2019.
  • Chala, G. T. and Ravichanthiran, S. “A study on microbial fuel cell (MFC) with graphite electrode to power underwater monitoring devices”, International Journal of Mechanical and Technology, 9(9), 98-105, 2018.
  • Pişkin, E. D. and Genç, N. “Mikrobiyal yakıt hücresinde nişasta içerikli atığın oksidasyonu ile elektrik üretimi”, Journal of Advanced Research in Natural and Applied Sciences, 9(2), 291-300, 2023.
  • Rossi, R., Fedrigucci, A. and Setti, L. “Characterization of electron mediated microbial fuel cell by Saccharomyces cerevisiae”. Chemical Engineering Transactions, 43, 337-342, 2015.
  • Shrivastava, A., Pal, M. and Sharma, R. K. “Simultaneous production of bioethanol and bioelectricity in a membrane-less single-chambered yeast fuel cell by Saccharomyces cerevisiae and Pichia fermentans”, Arabian Journal for Science and Engineering, 47, 6763-6771, 2022.
  • Verma, M. and Mishra V. “Bioelectricity generation by microbial degradation of banana peel waste biomass in a dual-chamber S. cerevisiae-based microbial fuel cell”, Biomass and Bioenergy, 168, 106677, 2023.
  • Fan, L. and Zhang, L. “Enhancing the power generation and COD removal of microbial fuel cell with ZrP-modified proton exchange membrane”, International Journal of Electrochemical Science, 13(3), 2911-2920, 2018.
  • Juang, D. F., Yang, P. C. and Kuo, T. H. “Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells”, International Journal of Environmental Science and Technology, 9, 267-280, 2012.
  • Pişkin, E. D., Genç, N., Akay, R. G. “Simultaneous optimization of electric production, azo dye, and yeast wastewater treatment in microbial fuel cell: Selection of the most suitable optimal conditions by PROMETHEE”, Renewable Energy, 2024
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temiz Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Gizem Hazan Akçay 0000-0002-5885-7934

Gönderilme Tarihi 8 Temmuz 2025
Kabul Tarihi 30 Ekim 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Akçay, G. H. (2025). BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS. Mugla Journal of Science and Technology, 11(2), 49-55. https://doi.org/10.22531/muglajsci.1737770
AMA Akçay GH. BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS. MJST. Aralık 2025;11(2):49-55. doi:10.22531/muglajsci.1737770
Chicago Akçay, Gizem Hazan. “BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS”. Mugla Journal of Science and Technology 11, sy. 2 (Aralık 2025): 49-55. https://doi.org/10.22531/muglajsci.1737770.
EndNote Akçay GH (01 Aralık 2025) BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS. Mugla Journal of Science and Technology 11 2 49–55.
IEEE G. H. Akçay, “BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS”, MJST, c. 11, sy. 2, ss. 49–55, 2025, doi: 10.22531/muglajsci.1737770.
ISNAD Akçay, Gizem Hazan. “BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS”. Mugla Journal of Science and Technology 11/2 (Aralık2025), 49-55. https://doi.org/10.22531/muglajsci.1737770.
JAMA Akçay GH. BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS. MJST. 2025;11:49–55.
MLA Akçay, Gizem Hazan. “BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS”. Mugla Journal of Science and Technology, c. 11, sy. 2, 2025, ss. 49-55, doi:10.22531/muglajsci.1737770.
Vancouver Akçay GH. BIOELECTRICITY GENERATION BY SACCHAROMYCES CEREVISIAE USING METHYLENE BLUE MEDIATOR IN VARIOUS MICROBIAL FUEL CELL DESIGNS. MJST. 2025;11(2):49-55.

8805
Mugla Journal of Science and Technology (MJST) dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.