Araştırma Makalesi
BibTex RIS Kaynak Göster

COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS

Yıl 2025, Cilt: 11 Sayı: 2, 118 - 126, 31.12.2025
https://doi.org/10.22531/muglajsci.1779320

Öz

This paper presents a comparative framework for translating alternative wind-speed distributions into plant-level power and reliability metrics under a unified turbine framework. We compare three widely used distributions—Weibull, Gamma, and Birnbaum-Saunders (BS)—while keeping all engineering inputs fixed (turbine power curve, rated power, operational speeds, and availability p). For each distribution, we construct the single-turbine power distribution, incorporate availability, and obtain the aggregate plant distribution for N turbines via discrete convolution. Our analysis reveals that distributional choice substantially affects sizing predictions: Birnbaum-Saunders consistently yields the most conservative estimates, requiring 30–70% more turbines than Weibull to achieve equivalent reliability targets across tested scenarios. Weibull provides the most optimistic predictions, while Gamma occupies an intermediate position. These differences are most pronounced at mid-range capacity thresholds (2–7 MW for N=10), where practical planning decisions occur. For moderate reliability targets, distribution choice alone can shift minimum fleet size requirements by 2–4 turbines, with direct implications for capital investment and risk assessment. We provide sensitivity analyses, mean power comparisons, and implementation details to ensure reproducibility.

Kaynakça

  • Zárate-Miñano, R., Anghel, M. ve Milano, F., "Continuous Wind Speed Models Based on Stochastic Differential Equations", Applied Energy, 104, 42–49, 2013.
  • Louie H, Sloughter JM. Probabilistic modeling and statistical characteristics of aggregate wind power. Large Scale Renewable Power Generation, Green Energy and Technology. Springer Science+Business Media Singapore; 2014. p. 19–51.
  • Li, P., Guan, X. ve Wu, J., "Aggregated Wind Power Generation Probabilistic Forecasting Based on Particle Filter", Energy Conversion and Management, 32, 96–579, 2015.
  • Xydas, E., Qadrdan, M., Marmaras, C., Cipcigan, L., Jenkins, N., ve Ameli, H., "Probabilistic Wind Power Forecasting and Its Application in the Scheduling of Gas-Fired Generators", Applied Energy, 32, 192–382, 2017.
  • Olaofe, Z. O. ve Folly, K. A., "Wind Power Estimation Using Recurrent Neural Network Technique", IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica), Johannesburg, South Africa, 1–7, 2012.
  • Safari, B., "Modeling Wind Speed and Wind Power Distributions in Rwanda", Renewable and Sustainable Energy Reviews, 32, 15–925, 2011.
  • Masseran, N., Razali, A. M., ve Ibrahim, K., "An Analysis of Wind Power Density Derived from Several Wind Speed Density Functions: The Regional Assessment on Wind Power in Malaysia", Renewable and Sustainable Energy Reviews, 32, 16–6476, 2012.
  • Zhang, Y., Wang, J., ve Luo, X., "Probabilistic Wind Power Forecasting Based on Logarithmic Transformation and Boundary Kernel", Energy Conversion and Management, 32, 96–440, 2015.
  • Sohoni, V., Gupta, S. ve Nema, R., "A Comparative Analysis of Wind Speed Probability Distributions for Wind Power Assessment of Four Sites", Turkish Journal of Electrical Engineering and Computer Sciences, 24(6), 4724–4735, 2016.
  • Mohammadi, K., Alavi, O. ve McGowan, J. G., "Use of Birnbaum–Saunders Distribution for Estimating Wind Speed and Wind Power Probability Distributions", Energy Conversion and Management, 32, 109–143, 2017.
  • Altunkaynak, A., Erdik, T., Dabanlı, İ., ve Şen, Z., "Theoretical Derivation of Wind Power Probability Distribution Function and Applications", Applied Energy, 32, 92–809, 2012.
  • Eryilmaz, S., ve Devrim, Y., "Theoretical Derivation of Wind Plant Power Distribution with the Consideration of Wind Turbine Reliability", Reliability Engineering & System Safety, 185, 192–197, 2019.
  • El Kihel, F., Baïda, M., El Khoukhi, H. ve El Hami, K., "Enhanced Weibull parameter estimation methods under complex terrain conditions", Renewable Energy, 223, 1190–1203, 2024.
  • Hassan, L., Tavana, M. R. ve Khorram, E., "A neutrosophic BirnbaumSaunders distribution model for imprecise wind data", Energy Reports, 11, 347–359, 2024.
  • Zhan, Y., Liu, S. ve Li, C., "Multifractal detrended fluctuation analysis and probabilistic distribution modeling of wind speed in Sichuan Province", Scientific Reports, 15 (2034), 1–13, 2025.
  • Ndeba, A., Louafi, R. E. ve Benjha, T., "Characterization of wind speed distribution using the Champernowne model: Application to Green Energy Park, Ben Guerir", International Journal of Energy Research, 49 (7), 8259–8275, 2025.
  • Phan, N., Vo, T. ve Nguyen, L., "Probabilistic models for wind speed prediction and strategic planning of wind energy in Vietnam", International Journal of Electrical and Electronics Engineering, 12 (1), 20–29, 2025.
  • Bousla, H., El Boussaad, I. ve Bekka, A., "Weibull‑based approaches for wind energy prediction: Comparative assessment and validation", Energy Procedia, 276, 530–540, 2025.
  • Özay, C. ve Çeliktaş, M. S., "Statistical Analysis of Wind Speed Using Two-Parameter Weibull Distribution in Alaçatı Region", Energy Conversion and Management, 32, 121–149,2016.

BİRLEŞİK TÜRBİN ÇERÇEVESİNDE RÜZGAR HIZI DAĞILIMLARININ KARŞILAŞTIRILMASI: SANTRAL ÖLÇEĞİNDE GÜÇ ANALİZİ

Yıl 2025, Cilt: 11 Sayı: 2, 118 - 126, 31.12.2025
https://doi.org/10.22531/muglajsci.1779320

Öz

Bu makale, alternatif rüzgar hızı dağılımlarını birleşik türbin çerçevesi altında santral düzeyindeki güç ve güvenilirlik ölçütlerine dönüştürmek için karşılaştırmalı bir çerçeve sunmaktadır. Tüm mühendislik girdileri sabit tutularak (türbin güç eğrisi, nominal güç, işletme hızları ve kullanılabilirlik p), üç yaygın dağılım-Weibull, Gamma ve Birnbaum-Saunders (BS)-karşılaştırılmıştır. Her dağılım için tek türbin güç dağılımı oluşturulmuş, kullanılabilirlik etkisi dâhil edilmiş ve ayrık konvolüsyon yöntemiyle N adet türbinin toplam tesis güç dağılımı elde edilmiştir. Analiz sonuçları, dağılım seçiminin boyutlandırma tahminlerini önemli ölçüde etkilediğini ortaya koymaktadır: Birnbaum–Saunders dağılımı, test edilen senaryolar boyunca en muhafazakâr tahminleri üretmekte ve Weibull dağılımına kıyasla aynı güvenilirlik hedeflerine ulaşmak için %30-70 oranında daha fazla türbin gerektirmektedir. Weibull dağılımı en iyimser tahminleri sağlarken, Gamma dağılımı arada bir konumda yer almaktadır. Bu farklılıklar, planlama açısından kritik olan orta aralık kapasite eşiklerinde (N = 10 için 2-7 MW) en belirgin düzeydedir. Orta düzey güvenilirlik hedefleri için, yalnızca dağılım seçimi minimum filo boyutu gereksinimini 2-4 türbin arasında değiştirebilmekte ve bu durum sermaye yatırımı ile risk değerlendirmesi açısından doğrudan etkiler yaratmaktadır. Çalışmada ayrıca duyarlılık analizleri, ortalama güç karşılaştırmaları ve tekrarlanabilirliği sağlamak amacıyla uygulama ayrıntıları sunulmaktadır.

Kaynakça

  • Zárate-Miñano, R., Anghel, M. ve Milano, F., "Continuous Wind Speed Models Based on Stochastic Differential Equations", Applied Energy, 104, 42–49, 2013.
  • Louie H, Sloughter JM. Probabilistic modeling and statistical characteristics of aggregate wind power. Large Scale Renewable Power Generation, Green Energy and Technology. Springer Science+Business Media Singapore; 2014. p. 19–51.
  • Li, P., Guan, X. ve Wu, J., "Aggregated Wind Power Generation Probabilistic Forecasting Based on Particle Filter", Energy Conversion and Management, 32, 96–579, 2015.
  • Xydas, E., Qadrdan, M., Marmaras, C., Cipcigan, L., Jenkins, N., ve Ameli, H., "Probabilistic Wind Power Forecasting and Its Application in the Scheduling of Gas-Fired Generators", Applied Energy, 32, 192–382, 2017.
  • Olaofe, Z. O. ve Folly, K. A., "Wind Power Estimation Using Recurrent Neural Network Technique", IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica), Johannesburg, South Africa, 1–7, 2012.
  • Safari, B., "Modeling Wind Speed and Wind Power Distributions in Rwanda", Renewable and Sustainable Energy Reviews, 32, 15–925, 2011.
  • Masseran, N., Razali, A. M., ve Ibrahim, K., "An Analysis of Wind Power Density Derived from Several Wind Speed Density Functions: The Regional Assessment on Wind Power in Malaysia", Renewable and Sustainable Energy Reviews, 32, 16–6476, 2012.
  • Zhang, Y., Wang, J., ve Luo, X., "Probabilistic Wind Power Forecasting Based on Logarithmic Transformation and Boundary Kernel", Energy Conversion and Management, 32, 96–440, 2015.
  • Sohoni, V., Gupta, S. ve Nema, R., "A Comparative Analysis of Wind Speed Probability Distributions for Wind Power Assessment of Four Sites", Turkish Journal of Electrical Engineering and Computer Sciences, 24(6), 4724–4735, 2016.
  • Mohammadi, K., Alavi, O. ve McGowan, J. G., "Use of Birnbaum–Saunders Distribution for Estimating Wind Speed and Wind Power Probability Distributions", Energy Conversion and Management, 32, 109–143, 2017.
  • Altunkaynak, A., Erdik, T., Dabanlı, İ., ve Şen, Z., "Theoretical Derivation of Wind Power Probability Distribution Function and Applications", Applied Energy, 32, 92–809, 2012.
  • Eryilmaz, S., ve Devrim, Y., "Theoretical Derivation of Wind Plant Power Distribution with the Consideration of Wind Turbine Reliability", Reliability Engineering & System Safety, 185, 192–197, 2019.
  • El Kihel, F., Baïda, M., El Khoukhi, H. ve El Hami, K., "Enhanced Weibull parameter estimation methods under complex terrain conditions", Renewable Energy, 223, 1190–1203, 2024.
  • Hassan, L., Tavana, M. R. ve Khorram, E., "A neutrosophic BirnbaumSaunders distribution model for imprecise wind data", Energy Reports, 11, 347–359, 2024.
  • Zhan, Y., Liu, S. ve Li, C., "Multifractal detrended fluctuation analysis and probabilistic distribution modeling of wind speed in Sichuan Province", Scientific Reports, 15 (2034), 1–13, 2025.
  • Ndeba, A., Louafi, R. E. ve Benjha, T., "Characterization of wind speed distribution using the Champernowne model: Application to Green Energy Park, Ben Guerir", International Journal of Energy Research, 49 (7), 8259–8275, 2025.
  • Phan, N., Vo, T. ve Nguyen, L., "Probabilistic models for wind speed prediction and strategic planning of wind energy in Vietnam", International Journal of Electrical and Electronics Engineering, 12 (1), 20–29, 2025.
  • Bousla, H., El Boussaad, I. ve Bekka, A., "Weibull‑based approaches for wind energy prediction: Comparative assessment and validation", Energy Procedia, 276, 530–540, 2025.
  • Özay, C. ve Çeliktaş, M. S., "Statistical Analysis of Wind Speed Using Two-Parameter Weibull Distribution in Alaçatı Region", Energy Conversion and Management, 32, 121–149,2016.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Olasılık Teorisi
Bölüm Araştırma Makalesi
Yazarlar

Murat Ozkut 0000-0002-0699-892X

Gönderilme Tarihi 6 Eylül 2025
Kabul Tarihi 5 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Ozkut, M. (2025). COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS. Mugla Journal of Science and Technology, 11(2), 118-126. https://doi.org/10.22531/muglajsci.1779320
AMA Ozkut M. COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS. MJST. Aralık 2025;11(2):118-126. doi:10.22531/muglajsci.1779320
Chicago Ozkut, Murat. “COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS”. Mugla Journal of Science and Technology 11, sy. 2 (Aralık 2025): 118-26. https://doi.org/10.22531/muglajsci.1779320.
EndNote Ozkut M (01 Aralık 2025) COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS. Mugla Journal of Science and Technology 11 2 118–126.
IEEE M. Ozkut, “COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS”, MJST, c. 11, sy. 2, ss. 118–126, 2025, doi: 10.22531/muglajsci.1779320.
ISNAD Ozkut, Murat. “COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS”. Mugla Journal of Science and Technology 11/2 (Aralık2025), 118-126. https://doi.org/10.22531/muglajsci.1779320.
JAMA Ozkut M. COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS. MJST. 2025;11:118–126.
MLA Ozkut, Murat. “COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS”. Mugla Journal of Science and Technology, c. 11, sy. 2, 2025, ss. 118-26, doi:10.22531/muglajsci.1779320.
Vancouver Ozkut M. COMPARISON OF WIND-SPEED DISTRIBUTIONS UNDER A UNIFIED TURBINE FRAMEWORK: A PLANT-LEVEL POWER ANALYSIS. MJST. 2025;11(2):118-26.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.