Araştırma Makalesi
BibTex RIS Kaynak Göster

PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS

Yıl 2022, Cilt: 8 Sayı: 1, 1 - 7, 28.06.2022
https://doi.org/10.22531/muglajsci.1019127

Öz

A comprehensive study was carried out starting from powder synthesis to sintering procedure in order to produce a phase-pure SrCe0.95Yb0.05O3 sputter target. In the powder synthesis, the effect of chelating and polymerization agents on the formation of single-phase SrCe0.95Yb0.05O3-δ was investigated in detail. In this regard, citric acid, EDTA, and their combinations in different ratios were evaluated as chelating agents. The calcination temperature, ranging from 1000 °C to 1300 °C, was also investigated to reveal its effect on the formation of possible secondary phases. Following the powder synthesis, SrCe0.95Yb0.05O3-δ sputter target with dimensions of ~50 mm diameter and ~3 mm thickness was produced by powder pressing with deformable compaction die and the subsequent sintering at 1300 °C for 10 hours. A relative density of 0.95 was achieved in SrCe0.95Yb0.05O3-δ targets as a result of the procedure in question without the use of a sintering aid.

Destekleyen Kurum

Scientific and Technical Research Council of Turkey

Proje Numarası

119M065

Kaynakça

  • Vøllestad, E., Strandbakke, R., Tarach, M., Catalán-Martínez, D., Fontaine, M.-L., Beeaff, D., Clark, D. R., Serra, J. M., and Norby, T., “Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers,” Nature Materials, vol. 18, no. 7, pp. 752–759, 2019.
  • Choi, S., Davenport, T. C., and Haile, S. M., “Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency,” Energy & Environmental Science, vol. 12, no. 1, pp. 206–215, 2019.
  • Hashim, S. S., Somalu, M. R., Loh, K. S., Liu, S., Zhou, W., and Sunarso, J., “Perovskite-based proton conducting membranes for hydrogen separation: A review,” International Journal of Hydrogen Energy, vol. 43, no. 32, pp. 15281–15305, 2018.
  • Wang, H., Wang, X., Meng, B., Tan, X., Loh, K. S., Sunarso, J., and Liu, S., “Perovskite-based mixed protonic–electronic conducting membranes for hydrogen separation: Recent status and advances,” Journal of Industrial and Engineering Chemistry, vol. 60, pp. 297–306, 2018.
  • Wei, Z., Wang, J., Yu, X., Li, Z., Zhao, Y., and Chai, J., “Study on Ce and Y co-doped BaFeO3-δ cubic perovskite as free-cobalt cathode for proton-conducting solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 46, no. 46, pp. 23868–23878, 2021.
  • Cao, Y., Dhahad, H. A., Sun, Y.-L., Abdollahi Haghghi, M., Delpisheh, M., Athari, H., and Farouk, N., “The role of input gas species to the cathode in the oxygen-ion conducting and proton conducting solid oxide fuel cells and their applications: Comparative 4E analysis,” International Journal of Hydrogen Energy, vol. 46, no. 37, pp. 19569–19589, 2021.
  • An, H., Lee, H.-W., Kim, B.-K., Son, J.-W., Yoon, K. J., Kim, H., Shin, D., Ji, H.-I., and Lee, J.-H., “A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600 °C,” Nature Energy, vol. 3, no. 10, pp. 870–875, 2018.
  • Okuyama, Y., Okuyama, K., Mizutani, Y., Sakai, T., Lee, Y. S., and Matsumoto, H., “Proton transport properties of La0.9Sr0.1Yb0.8In0.2O3−δ and its application to proton ceramic fuel cell,” International Journal of Hydrogen Energy, vol. 39, no. 35, pp. 20829–20836, 2014.
  • Souza, E. C. C. de and Muccillo, R., “Properties and applications of perovskite proton conductors,” Materials Research, vol. 13, no. 3, pp. 385–394, 2010.
  • Mather, G. C., Poulidi, D., Thursfield, A., Pascual, M. J., Jurado, J. R., and Metcalfe, I. S., “Hydrogen-permeation characteristics of a SrCeO3-based ceramic separation membrane: Thermal, ageing and surface-modification effects,” Solid State Ionics, vol. 181, no. 3–4, pp. 230–235, 2010.
  • Xing, W., Inge Dahl, P., Valland Roaas, L., Fontaine, M.-L., Larring, Y., Henriksen, P. P., and Bredesen, R., “Hydrogen permeability of SrCe0.7Zr0.25Ln0.05O3−δ membranes (Ln=Tm and Yb),” Journal of Membrane Science, vol. 473, pp. 327–332, 2015.
  • Taglieri, G., Tersigni, M., Villa, P. ., and Mondelli, C., “Synthesis by the citrate route and characterisation of BaZrO3, a high tech ceramic oxide: preliminary results,” International Journal of Inorganic Materials, vol. 1, no. 1, pp. 103–110, 1999.
  • D’Epifanio, A., Fabbri, E., Di Bartolomeo, E., Licoccia, S., and Traversa, E., “BaZrxY1-xO3-d and BaCe1-x-zZrxYzO3-d Proton Conductors For Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs),” ECS Transactions, vol. 7, no. 1, pp. 2337–2342, 2019.
  • Meng, B., “Synthesis and characterization of SrCe0.95Y0.05O3 nano powders by low temperature combustion,” Rare Metals, vol. 25, no. 1, pp. 79–83, 2006.
  • Iguchi, F., Tsurui, T., Sata, N., Nagao, Y., and Yugami, H., “The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors,” Solid State Ionics, vol. 180, no. 6–8, pp. 563–568, 2009.
  • Fallah Vostakola, M. and Amini Horri, B., “Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review,” Energies, vol. 14, no. 5, p. 1280, 2021.
  • Pornprasertsuk, R., Kosasang, O., Somroop, K., Horprathum, M., Limnonthakul, P., Chindaudom, P., and Jinawath, S., “Proton conductivity of Y-doped BaZrO3: Pellets and thin films,” Solid State Sciences, vol. 13, no. 7, pp. 1429–1437, 2011.
  • Droushiotis, N., Grande, F. D., Dzarfan Othman, M. H., Kanawka, K., Doraswami, U., Metcalfe, I. S., Li, K., and Kelsall, G., “Comparison Between Anode-Supported and Electrolyte-Supported Ni-CGO-LSCF Micro-tubular Solid Oxide Fuel Cells,” Fuel Cells, vol. 14, no. 2, pp. 200–211, 2014.
  • Yoon, H., Song, S.-J., Oh, T., Li, J., Duncan, K. L., and Wachsman, E. D., “Fabrication of Thin-Film SrCe 0.9 Eu 0.1 O 3−δ Hydrogen Separation Membranes on Ni-SrCeO 3 Porous Tubular Supports,” Journal of the American Ceramic Society, vol. 92, no. 8, pp. 1849–1852, 2009.
  • Lo, C.-C. and Hsieh, T.-E., “Preparation of IGZO sputtering target and its applications to thin-film transistor devices,” Ceramics International, vol. 38, no. 5, pp. 3977–3983, 2012.
  • Duval, S. B. C., Holtappels, P., Stimming, U., and Graule, T., “Effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3−δ,” Solid State Ionics, vol. 179, no. 21–26, pp. 1112–1115, 2008.
  • Babilo, P. and Haile, S. M., “Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO,” Journal of the American Ceramic Society, vol. 88, no. 9, pp. 2362–2368, 2005.
  • Zhang, W. and Hu, Y. H., “Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices,” Energy Science & Engineering, vol. 9, no. 7, pp. 984–1011, 2021.
  • Baker, R. T., Salar, R., Potter, A. R., Metcalfe, I. S., and Sahibzada, M., “Influence of morphology on the behaviour of electrodes in a proton-conducting Solid Oxide Fuel Cell,” Journal of Power Sources, vol. 191, no. 2, pp. 448–455, 2009.
  • Pechini, M. P., “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor,” 3,330,697, 1967
  • ASTM International, “Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle,” Astm B962-13, 2013..
  • Pişkin, F. and Öztürk, T., “Nb-Pd-Ti BCC thin films for hydrogen separation,” Journal of Alloys and Compounds, vol. 775, pp. 411–418, 2019.
  • Pişkin, F., Akyıldız, H., and Öztürk, T., “Ti modified Pd–Ag membranes for hydrogen separation,” International Journal of Hydrogen Energy, vol. 40, no. 24, pp. 7553–7558, 2015.
  • Pişkin, F. and Öztürk, T., “Combinatorial screening of Pd-Ag-Ni membranes for hydrogen separation,” Journal of Membrane Science, vol. 524, pp. 631–636, 2017.
  • Sarı, D., Yaşar, B., Pişkin, F., Kalay, Y. E., and Öztürk, T., “Segregation Resistant Nanocrystalline/Amorphous (La,Sr)CoO3-(La,Sr)2CoO4 Composite Cathodes for IT-SOFCs,” Journal of The Electrochemical Society, vol. 166, no. 15, pp. F1157–F1163, 2019.
  • Sarı, D., Pişkin, F., Torunoğlu, Z. C., Yaşar, B., Kalay, Y. E., and Öztürk, T., “Combinatorial development of nanocrystalline/amorphous (La,Sr)CoO3-(La,Sr)2CoO4 composite cathodes for IT-SOFCs,” Solid State Ionics, vol. 326, pp. 124–130, 2018.
  • Rietveld, H. M., “A profile refinement method for nuclear and magnetic structures,” Journal of Applied Crystallography, vol. 2, no. 2, pp. 65–71, 1969.
  • Lutterotti, L., Chateigner, D., Ferrari, S., and Ricote, J., “Texture, residual stress and structural analysis of thin films using a combined X-ray analysis,” Thin Solid Films, vol. 450, no. 1, pp. 34–41, 2004.
  • Ischia, G., Wenk, H.-R., Lutterotti, L., and Berberich, F., “Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images,” Journal of Applied Crystallography, vol. 38, no. 2, pp. 377–380, 2005.
  • Dahl, P. I., Haugsrud, R., Lein, H. L., Grande, T., Norby, T., and Einarsrud, M.-A., “Synthesis, densification and electrical properties of strontium cerate ceramics,” Journal of the European Ceramic Society, vol. 27, no. 16, pp. 4461–4471, 2007.
  • Minhui, Z., Xiuxin, Z., and Zhigang, Z., “Preparation and Characterization of Yb Doped SrCeO3 Based High Temperature Proton Conductor,” Chinese Journal of Engineering, vol. 15, no. 3, pp. 310–315, 1993.
  • Ning, Z., Da-Ming, Z., and Gong, Z., “An investigation on preparation of CIGS targets by sintering process,” Materials Science and Engineering: B, vol. 166, no. 1, pp. 34–40, 2010.
Yıl 2022, Cilt: 8 Sayı: 1, 1 - 7, 28.06.2022
https://doi.org/10.22531/muglajsci.1019127

Öz

Proje Numarası

119M065

Kaynakça

  • Vøllestad, E., Strandbakke, R., Tarach, M., Catalán-Martínez, D., Fontaine, M.-L., Beeaff, D., Clark, D. R., Serra, J. M., and Norby, T., “Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers,” Nature Materials, vol. 18, no. 7, pp. 752–759, 2019.
  • Choi, S., Davenport, T. C., and Haile, S. M., “Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency,” Energy & Environmental Science, vol. 12, no. 1, pp. 206–215, 2019.
  • Hashim, S. S., Somalu, M. R., Loh, K. S., Liu, S., Zhou, W., and Sunarso, J., “Perovskite-based proton conducting membranes for hydrogen separation: A review,” International Journal of Hydrogen Energy, vol. 43, no. 32, pp. 15281–15305, 2018.
  • Wang, H., Wang, X., Meng, B., Tan, X., Loh, K. S., Sunarso, J., and Liu, S., “Perovskite-based mixed protonic–electronic conducting membranes for hydrogen separation: Recent status and advances,” Journal of Industrial and Engineering Chemistry, vol. 60, pp. 297–306, 2018.
  • Wei, Z., Wang, J., Yu, X., Li, Z., Zhao, Y., and Chai, J., “Study on Ce and Y co-doped BaFeO3-δ cubic perovskite as free-cobalt cathode for proton-conducting solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 46, no. 46, pp. 23868–23878, 2021.
  • Cao, Y., Dhahad, H. A., Sun, Y.-L., Abdollahi Haghghi, M., Delpisheh, M., Athari, H., and Farouk, N., “The role of input gas species to the cathode in the oxygen-ion conducting and proton conducting solid oxide fuel cells and their applications: Comparative 4E analysis,” International Journal of Hydrogen Energy, vol. 46, no. 37, pp. 19569–19589, 2021.
  • An, H., Lee, H.-W., Kim, B.-K., Son, J.-W., Yoon, K. J., Kim, H., Shin, D., Ji, H.-I., and Lee, J.-H., “A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600 °C,” Nature Energy, vol. 3, no. 10, pp. 870–875, 2018.
  • Okuyama, Y., Okuyama, K., Mizutani, Y., Sakai, T., Lee, Y. S., and Matsumoto, H., “Proton transport properties of La0.9Sr0.1Yb0.8In0.2O3−δ and its application to proton ceramic fuel cell,” International Journal of Hydrogen Energy, vol. 39, no. 35, pp. 20829–20836, 2014.
  • Souza, E. C. C. de and Muccillo, R., “Properties and applications of perovskite proton conductors,” Materials Research, vol. 13, no. 3, pp. 385–394, 2010.
  • Mather, G. C., Poulidi, D., Thursfield, A., Pascual, M. J., Jurado, J. R., and Metcalfe, I. S., “Hydrogen-permeation characteristics of a SrCeO3-based ceramic separation membrane: Thermal, ageing and surface-modification effects,” Solid State Ionics, vol. 181, no. 3–4, pp. 230–235, 2010.
  • Xing, W., Inge Dahl, P., Valland Roaas, L., Fontaine, M.-L., Larring, Y., Henriksen, P. P., and Bredesen, R., “Hydrogen permeability of SrCe0.7Zr0.25Ln0.05O3−δ membranes (Ln=Tm and Yb),” Journal of Membrane Science, vol. 473, pp. 327–332, 2015.
  • Taglieri, G., Tersigni, M., Villa, P. ., and Mondelli, C., “Synthesis by the citrate route and characterisation of BaZrO3, a high tech ceramic oxide: preliminary results,” International Journal of Inorganic Materials, vol. 1, no. 1, pp. 103–110, 1999.
  • D’Epifanio, A., Fabbri, E., Di Bartolomeo, E., Licoccia, S., and Traversa, E., “BaZrxY1-xO3-d and BaCe1-x-zZrxYzO3-d Proton Conductors For Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs),” ECS Transactions, vol. 7, no. 1, pp. 2337–2342, 2019.
  • Meng, B., “Synthesis and characterization of SrCe0.95Y0.05O3 nano powders by low temperature combustion,” Rare Metals, vol. 25, no. 1, pp. 79–83, 2006.
  • Iguchi, F., Tsurui, T., Sata, N., Nagao, Y., and Yugami, H., “The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors,” Solid State Ionics, vol. 180, no. 6–8, pp. 563–568, 2009.
  • Fallah Vostakola, M. and Amini Horri, B., “Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review,” Energies, vol. 14, no. 5, p. 1280, 2021.
  • Pornprasertsuk, R., Kosasang, O., Somroop, K., Horprathum, M., Limnonthakul, P., Chindaudom, P., and Jinawath, S., “Proton conductivity of Y-doped BaZrO3: Pellets and thin films,” Solid State Sciences, vol. 13, no. 7, pp. 1429–1437, 2011.
  • Droushiotis, N., Grande, F. D., Dzarfan Othman, M. H., Kanawka, K., Doraswami, U., Metcalfe, I. S., Li, K., and Kelsall, G., “Comparison Between Anode-Supported and Electrolyte-Supported Ni-CGO-LSCF Micro-tubular Solid Oxide Fuel Cells,” Fuel Cells, vol. 14, no. 2, pp. 200–211, 2014.
  • Yoon, H., Song, S.-J., Oh, T., Li, J., Duncan, K. L., and Wachsman, E. D., “Fabrication of Thin-Film SrCe 0.9 Eu 0.1 O 3−δ Hydrogen Separation Membranes on Ni-SrCeO 3 Porous Tubular Supports,” Journal of the American Ceramic Society, vol. 92, no. 8, pp. 1849–1852, 2009.
  • Lo, C.-C. and Hsieh, T.-E., “Preparation of IGZO sputtering target and its applications to thin-film transistor devices,” Ceramics International, vol. 38, no. 5, pp. 3977–3983, 2012.
  • Duval, S. B. C., Holtappels, P., Stimming, U., and Graule, T., “Effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3−δ,” Solid State Ionics, vol. 179, no. 21–26, pp. 1112–1115, 2008.
  • Babilo, P. and Haile, S. M., “Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO,” Journal of the American Ceramic Society, vol. 88, no. 9, pp. 2362–2368, 2005.
  • Zhang, W. and Hu, Y. H., “Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices,” Energy Science & Engineering, vol. 9, no. 7, pp. 984–1011, 2021.
  • Baker, R. T., Salar, R., Potter, A. R., Metcalfe, I. S., and Sahibzada, M., “Influence of morphology on the behaviour of electrodes in a proton-conducting Solid Oxide Fuel Cell,” Journal of Power Sources, vol. 191, no. 2, pp. 448–455, 2009.
  • Pechini, M. P., “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor,” 3,330,697, 1967
  • ASTM International, “Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle,” Astm B962-13, 2013..
  • Pişkin, F. and Öztürk, T., “Nb-Pd-Ti BCC thin films for hydrogen separation,” Journal of Alloys and Compounds, vol. 775, pp. 411–418, 2019.
  • Pişkin, F., Akyıldız, H., and Öztürk, T., “Ti modified Pd–Ag membranes for hydrogen separation,” International Journal of Hydrogen Energy, vol. 40, no. 24, pp. 7553–7558, 2015.
  • Pişkin, F. and Öztürk, T., “Combinatorial screening of Pd-Ag-Ni membranes for hydrogen separation,” Journal of Membrane Science, vol. 524, pp. 631–636, 2017.
  • Sarı, D., Yaşar, B., Pişkin, F., Kalay, Y. E., and Öztürk, T., “Segregation Resistant Nanocrystalline/Amorphous (La,Sr)CoO3-(La,Sr)2CoO4 Composite Cathodes for IT-SOFCs,” Journal of The Electrochemical Society, vol. 166, no. 15, pp. F1157–F1163, 2019.
  • Sarı, D., Pişkin, F., Torunoğlu, Z. C., Yaşar, B., Kalay, Y. E., and Öztürk, T., “Combinatorial development of nanocrystalline/amorphous (La,Sr)CoO3-(La,Sr)2CoO4 composite cathodes for IT-SOFCs,” Solid State Ionics, vol. 326, pp. 124–130, 2018.
  • Rietveld, H. M., “A profile refinement method for nuclear and magnetic structures,” Journal of Applied Crystallography, vol. 2, no. 2, pp. 65–71, 1969.
  • Lutterotti, L., Chateigner, D., Ferrari, S., and Ricote, J., “Texture, residual stress and structural analysis of thin films using a combined X-ray analysis,” Thin Solid Films, vol. 450, no. 1, pp. 34–41, 2004.
  • Ischia, G., Wenk, H.-R., Lutterotti, L., and Berberich, F., “Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images,” Journal of Applied Crystallography, vol. 38, no. 2, pp. 377–380, 2005.
  • Dahl, P. I., Haugsrud, R., Lein, H. L., Grande, T., Norby, T., and Einarsrud, M.-A., “Synthesis, densification and electrical properties of strontium cerate ceramics,” Journal of the European Ceramic Society, vol. 27, no. 16, pp. 4461–4471, 2007.
  • Minhui, Z., Xiuxin, Z., and Zhigang, Z., “Preparation and Characterization of Yb Doped SrCeO3 Based High Temperature Proton Conductor,” Chinese Journal of Engineering, vol. 15, no. 3, pp. 310–315, 1993.
  • Ning, Z., Da-Ming, Z., and Gong, Z., “An investigation on preparation of CIGS targets by sintering process,” Materials Science and Engineering: B, vol. 166, no. 1, pp. 34–40, 2010.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatih Pişkin 0000-0002-5321-0381

Proje Numarası 119M065
Erken Görünüm Tarihi 16 Mayıs 2022
Yayımlanma Tarihi 28 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 1

Kaynak Göster

APA Pişkin, F. (2022). PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS. Mugla Journal of Science and Technology, 8(1), 1-7. https://doi.org/10.22531/muglajsci.1019127
AMA Pişkin F. PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS. MJST. Haziran 2022;8(1):1-7. doi:10.22531/muglajsci.1019127
Chicago Pişkin, Fatih. “PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS”. Mugla Journal of Science and Technology 8, sy. 1 (Haziran 2022): 1-7. https://doi.org/10.22531/muglajsci.1019127.
EndNote Pişkin F (01 Haziran 2022) PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS. Mugla Journal of Science and Technology 8 1 1–7.
IEEE F. Pişkin, “PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS”, MJST, c. 8, sy. 1, ss. 1–7, 2022, doi: 10.22531/muglajsci.1019127.
ISNAD Pişkin, Fatih. “PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS”. Mugla Journal of Science and Technology 8/1 (Haziran 2022), 1-7. https://doi.org/10.22531/muglajsci.1019127.
JAMA Pişkin F. PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS. MJST. 2022;8:1–7.
MLA Pişkin, Fatih. “PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS”. Mugla Journal of Science and Technology, c. 8, sy. 1, 2022, ss. 1-7, doi:10.22531/muglajsci.1019127.
Vancouver Pişkin F. PREPARATION OF YB-DOPED SRCEO3 SPUTTER TARGETS FOR PROTONIC SOLID OXIDE FUEL CELLS. MJST. 2022;8(1):1-7.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.