Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI ÖRME YAPILARINA SAHİP KNT İLAVELİ PP/CAM ELYAF TAKVİYELİ ÇİFT EKSENLİ ATKI ÖRME TERMOPLASTİK KOMPOZİTLERİNİN MEKANİK ÖZELLİKLERİ

Yıl 2024, Cilt: 10 Sayı: 1, 33 - 41, 30.06.2024
https://doi.org/10.22531/muglajsci.1422587

Öz

Bu çalışmada düz (P), interlok (INT), askı (T) ve askı&atlama (TM) gibi farklı örgü yapılarına sahip dört tip çift eksenli atkılı örme (BWK) kumaş (polipropilen (PP) reçine iplik/cam elyaf (GF)) ve çok duvarlı karbon nanotüpler (ÇDKNT'ler) (ağırlıkça %0,4) ÇDKNT ilaveli termoplastik laminantlar üretmek için takviye olarak kullanıldı. Laminantların mekanik özelliklerini incelemek için, eğilme, kısa kiriş ve Charpy darbe testleri numunelere uygulandı. Ön çalışmalarda, ÇDKNT'li ve ÇDKNT'siz termoplastik laminantların üretilmesi için düz örgülü BWK kumaşlar kullanılmış ve numuneler üzerinde eğilme testleri yapılarak ÇDKNT 'lerin laminantlar üzerindeki olumlu etkisi ortaya çıkarılmıştır. Ağırlıkça %0,4 ÇDKNT'li INT ve TM örgü tipleri neredeyse aynı bükülme modülüsü ve mukavemetine sahiptir. Ağırlıkça %0,4 ÇDKNT'li interlok örgü tipine sahip BWK laminantlarla askı tipi ile olanlarına göre %5 ve %41 daha yüksek bükülme modülü ve mukavemeti elde edildi. Ağırlıkça %0,4 ÇDKNT'li askı&atlama örgülü (21,02 MPa ve 6,34 Joule) ve askı örgülü (16,39 MPa ve 4,04 Joule) plakalar karşılaştırıldığında %28,2 daha yüksek kısa kiriş mukavemeti ve %57 daha yüksek Charpy darbe enerjisi elde edildi.

Proje Numarası

Project Numbers: PYO.MUH.1901.16.001 and PYO.MUH.1901.18.008

Kaynakça

  • Demircan, Ö., Ashibe, S., Kosui, T. and Nakai, A., “Effect of various knitting techniques on mechanical properties of biaxial weft-knitted thermoplastic composites”, Journal of Thermoplastic Composite Materials, 28(6), 896–910, 2014.
  • Quadrini, F., Bellisario, D., Santo, L., Stan, F. and Catalin, F., “Compression moulding of thermoplastic nanocomposites filled with MWCNT”, Polymers & Polymer Composites, 25(8), 611–620, 2017.
  • Teng, C.C., Ma, C.C.M., Huang, Y.W., Yuen, S.M., Weng, C.C., Chen, C.H. and Su S.F., “Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites”, Composites Part A: Applied Science and Manufacturing, 39(12), 1869–1875, 2008.
  • Zhou, T.Y., Tsui, G.C.P., Liang, J.Z., Zou, S.Y., Tang, C.Y. and Mišković-Stanković V., “Thermal properties and thermal stability of PP/MWCNT composites”, Composites Part B: Engineering, 90, 107–114, 2016.
  • Seo, M.K., Lee, J.R. and Park, S.J., “Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes”, Materials Science and Engineering: A, 404(1–2), 79–84, 2005.
  • Lozano-Sánchez, L.M., Sustaita, A.O., Soto, M., Biradar, S., Ge, L., Segura-Cárdenas, E, Diabb J., L.E., Elizalde, Barrera E.V. and Elías-Zúniga A., “Mechanical and structural studies on single point incremental forming of polypropylene-MWCNTs composite sheets”, Journal of Materials Processing Technology, 242, 218–227. 2017.
  • Bikiaris, D., “Microstructure and properties of polypropylene/carbon nanotube nanocomposites”, Materials, 3(4), 2884, 2010.
  • Ezenkwa, O.E., Hassan, A. and Samsudin, S.A., “Comparison of mechanical properties and thermal stability of graphene-based materials and halloysite nanotubes reinforced maleated polymer compatibilized polypropylene nanocomposites”, Polymer Composites. 43(3), 1852–1863, 2022.
  • Abubakre, O.K., Medupin, R.O., Akintunde, I.B., Jimoh, O.T., Abdulkareem, A.S., Muriana, R.A, James J.A., Ukoba KO., Jen T.C. and Yoro K.O., “Carbon nanotube-reinforced polymer nanocomposites for sustainable biomedical applications: A review”, Journal of Science: Advanced Materials and Devices, 8(2), 100557, 2023.
  • Yousefi, A.A., Rezaei, M. and Naderpour, N., “Hybrid multiwalled-carbon nanotube/nanosilica/ polypropylene nanocomposites: Morphology, rheology, and mechanical properties”, Polymer Composites, 44(9), 5464–5479, 2023.
  • Mi, D., Zhao, Z. and Bai, H., “Effects of orientation and dispersion on electrical conductivity and mechanical properties of Carbon Nanotube/Polypropylene composite”, Polymers (Basel), 15(10), 2370, 2023.
  • Raja, G.M., Vasanthanathan, A. and Selvabharathi, R., “Effect of one-step dipping coating process on microstructure and tribology of polypropylene/graphene oxide/carbon nanotube nanocomposites”, Iranian Polymer Journal, 32(6), 739–748, 2023.
  • Papageorgiou, D.G., Kinloch, I.A. and Young, R.J., “Hybrid multifunctional graphene/glass-fibre polypropylene composites”. Composites Science and Technology, 137, 44–51, 2016.
  • Liu, M., Lin, K., Yao, X., Vallés, C., Bissett, M.A., Young, R.J. and Kinloch I.A., “Mechanics of reinforcement in a hybrid graphene and continuous glass fibre reinforced thermoplastic”, Composites Science and Technology. 237,110001, 2023.
  • Gamze, Karsli, N., Yesil, S. and Aytac, A., “Effect of hybrid carbon nanotube/short glass fiber reinforcement on the properties of polypropylene composites”, Composites Part B: Engineering, 63, 154–160, 2014.
  • Shirvanimoghaddam, K., Balaji, K.V., Yadav, R., Zabihi, O., Ahmadi, M., Adetunji, P. and Naebe M., “Balancing the toughness and strength in polypropylene composites”, Composites Part B: Engineering, 223, 109121, 2021.
  • Salari, M., Sansone, N.D., Razzaz, Z., Taromsori, S.M., Leroux, M., Park, C.B. and Lee, PC., “Insights into synergy-induced multifunctional property enhancement mechanisms in hybrid graphene nanoplatelet reinforced polymer composites”, Chemical Engineering Journal, 463, 142406, 2023.
  • Ramesh, M., Rajeshkumar, L.N., Srinivasan, N., Kumar, D.V. and Balaji, D., “Influence of filler material on properties of fiber-reinforced polymer composites: A review”, E-Polymers, 22(1), 898–916, 2022.
  • Nguyen-Tran, H.D., Hoang, V.T., Do V.T., Chun, D.M. and Yum Y.J., “Effect of multiwalled carbon nanotubes on the mechanical properties of carbon Fiber-Reinforced Polyamide-6/Polypropylene composites for lightweight automotive parts”. Materials, 11(3), 2018.
  • Dhilipkumar, T. and Rajesh, M., “Effect of manufacturing processes and multi-walled carbon nanotube loading on mechanical and dynamic properties of glass fiber reinforced composites”, Polymer Composites, 43(3), 1772–1786, 2022.
  • Peng, K., Wan, Y.J., Ren, D.Y., Zeng, Q.W. and Tang, L.C., “Scalable preparation of multiscale carbon nanotube/glass fiber reinforcements and their application in polymer composites”, Fibers and Polymers.;15(6):1242–1250, 2014.
  • Rasana, N., Jayanarayanan, K. and Ramachandran, K.I., “Experimental, analytical and finite element studies on nano(MWCNT) and hybrid (MWCNT/glass fiber) filler reinforced polypropylene composites”, Iranian Polymer Journal, 29(12), 1071–85, 2020.
  • Mäder, E., Rausch, J. and Schmidt, N., “Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites”, Composites Part A: Applied Science and Manufacturing, 39(4), 612–623, 2008.
  • Fang, J., Zhang, L. and Li, C., “The combined effect of impregnated rollers configuration and glass fibers surface modification on the properties of continuous glass fibers reinforced polypropylene prepreg composites”, Composites Science and Technology.;197:108259, 2020.
  • Díez-Pascual, A.M., Naffakh, M., Marco, C, Gómez-Fatou, M.A. and Ellis, G.J., “Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review”, Current Opinion in Solid State & Materials Science, 18(2), 62–80, 2014.
  • Pedrazzoli, D. and Pegoretti, A., “Hybridization of short glass fiber polypropylene composites with nanosilica and graphite nanoplatelets”, Journal of Reinforced Plastics and Composites, 33(18), 1682–1695, 2014.
  • Rausch, J., Zhuang, R.C. and Mäder, E., “Application of nanomaterials in sizings for glass fibre/polypropylene hybrid yarn spinning”, Materials Technology, 24(1), 29–35, 2009.
  • Mäder, E., Rothe, C. and Gao, S.L., “Commingled yarns of surface nanostructured glass and polypropylene filaments for effective composite properties”, Journal of Materials Science, 42(19), 8062–8070, 2007.
  • Rasana, N. and Jayanarayanan, K., “Polypropylene/short glass fiber/nanosilica hybrid composites: evaluation of morphology, mechanical, thermal, and transport properties”, Polymer Bulletin, 75(6), 2587–2605, 2018.
  • Qi, Y., Li, J. and Liu, L., “Tensile properties of multilayer-connected biaxial weft knitted fabric reinforced composites for carbon fibers”, Materials & Design, 54, 678–685, 2014.
  • Khondker, O.A., Leong, K.H. and Herszberg, I., “Effects of biaxial deformation of the knitted glass preform on the in-plane mechanical properties of the composite”, Composites Part A: Applied Science and Manufacturing, 32(10), 1513–1523, 2001.
  • Abounaim, M, Diestel, O, Hoffmann, G and Cherif, C., “High performance thermoplastic composite from flat knitted multi-layer textile preform using hybrid yarn”, Composites Science and Technology, 71(4), 511–519, 2011.
  • Hamada, H., Sugimoto, K., Nakai, A., Takeda, N., Gotoh, S. and Ishida, T., “Mechanical properties of knitted fabric composites”, Journal of Reinforced Plastics and Composites, 19(5), 364–376, 2000.
  • Kiss, P., Stadlbauer, W., Burgstaller, C. and Archodoulaki, V.M., “Development of high-performance glass fibre-polypropylene composite laminates: Effect of fibre sizing type and coupling agent concentration on mechanical properties”, Composites Part A: Applied Science and Manufacturing, 138, 106056, 2020.
  • Hufenbach, W., Böhm, R., Thieme, M., Winkler, A, Mäder, E., Rausch, J. and Schade. M., “Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications”, Materials & Design, 32(3), 1468–1476, 2011.
  • Liu, M.H., Li, R., Wang, G., Hou, Z.Y. and Huang, B., “Morphology and dynamic mechanical properties of long glass fiber-reinforced polyamide 6 composites”, Journal of Thermal Analysis and Calorimetry, 126(3), 1281–1288, 2016.
  • Demircan, O., Al-darkazali, A., İnanç, I. and Eskizeybek, V. “Investigation of the effect of CNTs on the mechanical properties of LPET/glass fiber thermoplastic composites”, Journal of Thermoplastic Composite Materials, 33(12), 1652–1673, 2019.
  • Bilisik, K, Erdogan, G and Sapanci, E., “Interlaminar shear properties of nanostitched/nanoprepreg aramid/phenolic composites by short beam method”, Journal of Composite Materials, 53(21), 2941-2957, 2019.
  • Bilisik, K, Erdogan, G and Sapanci, E. “Flexural behavior of 3D para-aramid/phenolic/nano (MWCNT) composites”, RSC Advances, 8, 7213-7224, 2018.
  • Papila, M. Bilge, K., Yenigün, E. O., Şimşek, E. and Menceloğlu, Y. Z., “Structural composites hybridized with epoxy compatible polymer/MWCNT nanofibrous interlayers”, Composites Science and Technology, 72, 1639, 2012.

MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES

Yıl 2024, Cilt: 10 Sayı: 1, 33 - 41, 30.06.2024
https://doi.org/10.22531/muglajsci.1422587

Öz

In this study, four types of biaxial weft-knitted (BWK) fabrics (polypropylene (PP) resin yarn/glass fiber (GF) with different knitting structures such as plain (P), interlock (INT), tuck (T) and tuck&miss (TM) and multi-walled carbon nanotubes (MWCNTs) (0.4 wt%) were used as reinforcements to produce thermoplastic laminates with MWCNTs. In order to study the mechanical characteristics of the laminates, the flexural, short beam and Charpy impact tests on the samples were performed. In preliminary studies, the BWK fabrics with the plain knittings were used to produce the thermoplastic laminates with and without MWCNTs and positive effect of MWCNTs on the laminates were found out by performing the flexural tests on the specimens. The BWK laminates with the INT and TM knitting types with 0.4 wt% MWCNTs had almost same bending modulus and strength. 5% and 41% higher bending modulus and strength were gained with the BWK laminates with the interlock knitting type with 0.4-wt% MWCNTs compared to that was with the tuck type. 28.2% higher short beam strength and 57% higher Charpy impact energy were obtained with tuck&miss with 0.4-wt% MWCNTs (21.02 MPa and 6.34 Joule) compared to that was with the tuck knitting (16.39 MPa and 4.04 Joule).

Etik Beyan

This study is an original study; Scientific ethical principles and rules were followed at all stages of the study, including preparation, data collection, analysis and presentation of information.

Destekleyen Kurum

We wish to acknowledge company of Shima Seiki Mfg. Ltd., Japan to supply BWK fabrics. This work was supported by the Research fund of Ondokuz Mayıs University (Project Numbers: PYO.MUH.1901.16.001 and PYO.MUH.1901.18.008).

Proje Numarası

Project Numbers: PYO.MUH.1901.16.001 and PYO.MUH.1901.18.008

Teşekkür

We wish to acknowledge company of Shima Seiki Mfg. Ltd., Japan to supply BWK fabrics. This work was supported by the Research fund of Ondokuz Mayıs University (Project Numbers: PYO.MUH.1901.16.001 and PYO.MUH.1901.18.008).

Kaynakça

  • Demircan, Ö., Ashibe, S., Kosui, T. and Nakai, A., “Effect of various knitting techniques on mechanical properties of biaxial weft-knitted thermoplastic composites”, Journal of Thermoplastic Composite Materials, 28(6), 896–910, 2014.
  • Quadrini, F., Bellisario, D., Santo, L., Stan, F. and Catalin, F., “Compression moulding of thermoplastic nanocomposites filled with MWCNT”, Polymers & Polymer Composites, 25(8), 611–620, 2017.
  • Teng, C.C., Ma, C.C.M., Huang, Y.W., Yuen, S.M., Weng, C.C., Chen, C.H. and Su S.F., “Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites”, Composites Part A: Applied Science and Manufacturing, 39(12), 1869–1875, 2008.
  • Zhou, T.Y., Tsui, G.C.P., Liang, J.Z., Zou, S.Y., Tang, C.Y. and Mišković-Stanković V., “Thermal properties and thermal stability of PP/MWCNT composites”, Composites Part B: Engineering, 90, 107–114, 2016.
  • Seo, M.K., Lee, J.R. and Park, S.J., “Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes”, Materials Science and Engineering: A, 404(1–2), 79–84, 2005.
  • Lozano-Sánchez, L.M., Sustaita, A.O., Soto, M., Biradar, S., Ge, L., Segura-Cárdenas, E, Diabb J., L.E., Elizalde, Barrera E.V. and Elías-Zúniga A., “Mechanical and structural studies on single point incremental forming of polypropylene-MWCNTs composite sheets”, Journal of Materials Processing Technology, 242, 218–227. 2017.
  • Bikiaris, D., “Microstructure and properties of polypropylene/carbon nanotube nanocomposites”, Materials, 3(4), 2884, 2010.
  • Ezenkwa, O.E., Hassan, A. and Samsudin, S.A., “Comparison of mechanical properties and thermal stability of graphene-based materials and halloysite nanotubes reinforced maleated polymer compatibilized polypropylene nanocomposites”, Polymer Composites. 43(3), 1852–1863, 2022.
  • Abubakre, O.K., Medupin, R.O., Akintunde, I.B., Jimoh, O.T., Abdulkareem, A.S., Muriana, R.A, James J.A., Ukoba KO., Jen T.C. and Yoro K.O., “Carbon nanotube-reinforced polymer nanocomposites for sustainable biomedical applications: A review”, Journal of Science: Advanced Materials and Devices, 8(2), 100557, 2023.
  • Yousefi, A.A., Rezaei, M. and Naderpour, N., “Hybrid multiwalled-carbon nanotube/nanosilica/ polypropylene nanocomposites: Morphology, rheology, and mechanical properties”, Polymer Composites, 44(9), 5464–5479, 2023.
  • Mi, D., Zhao, Z. and Bai, H., “Effects of orientation and dispersion on electrical conductivity and mechanical properties of Carbon Nanotube/Polypropylene composite”, Polymers (Basel), 15(10), 2370, 2023.
  • Raja, G.M., Vasanthanathan, A. and Selvabharathi, R., “Effect of one-step dipping coating process on microstructure and tribology of polypropylene/graphene oxide/carbon nanotube nanocomposites”, Iranian Polymer Journal, 32(6), 739–748, 2023.
  • Papageorgiou, D.G., Kinloch, I.A. and Young, R.J., “Hybrid multifunctional graphene/glass-fibre polypropylene composites”. Composites Science and Technology, 137, 44–51, 2016.
  • Liu, M., Lin, K., Yao, X., Vallés, C., Bissett, M.A., Young, R.J. and Kinloch I.A., “Mechanics of reinforcement in a hybrid graphene and continuous glass fibre reinforced thermoplastic”, Composites Science and Technology. 237,110001, 2023.
  • Gamze, Karsli, N., Yesil, S. and Aytac, A., “Effect of hybrid carbon nanotube/short glass fiber reinforcement on the properties of polypropylene composites”, Composites Part B: Engineering, 63, 154–160, 2014.
  • Shirvanimoghaddam, K., Balaji, K.V., Yadav, R., Zabihi, O., Ahmadi, M., Adetunji, P. and Naebe M., “Balancing the toughness and strength in polypropylene composites”, Composites Part B: Engineering, 223, 109121, 2021.
  • Salari, M., Sansone, N.D., Razzaz, Z., Taromsori, S.M., Leroux, M., Park, C.B. and Lee, PC., “Insights into synergy-induced multifunctional property enhancement mechanisms in hybrid graphene nanoplatelet reinforced polymer composites”, Chemical Engineering Journal, 463, 142406, 2023.
  • Ramesh, M., Rajeshkumar, L.N., Srinivasan, N., Kumar, D.V. and Balaji, D., “Influence of filler material on properties of fiber-reinforced polymer composites: A review”, E-Polymers, 22(1), 898–916, 2022.
  • Nguyen-Tran, H.D., Hoang, V.T., Do V.T., Chun, D.M. and Yum Y.J., “Effect of multiwalled carbon nanotubes on the mechanical properties of carbon Fiber-Reinforced Polyamide-6/Polypropylene composites for lightweight automotive parts”. Materials, 11(3), 2018.
  • Dhilipkumar, T. and Rajesh, M., “Effect of manufacturing processes and multi-walled carbon nanotube loading on mechanical and dynamic properties of glass fiber reinforced composites”, Polymer Composites, 43(3), 1772–1786, 2022.
  • Peng, K., Wan, Y.J., Ren, D.Y., Zeng, Q.W. and Tang, L.C., “Scalable preparation of multiscale carbon nanotube/glass fiber reinforcements and their application in polymer composites”, Fibers and Polymers.;15(6):1242–1250, 2014.
  • Rasana, N., Jayanarayanan, K. and Ramachandran, K.I., “Experimental, analytical and finite element studies on nano(MWCNT) and hybrid (MWCNT/glass fiber) filler reinforced polypropylene composites”, Iranian Polymer Journal, 29(12), 1071–85, 2020.
  • Mäder, E., Rausch, J. and Schmidt, N., “Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites”, Composites Part A: Applied Science and Manufacturing, 39(4), 612–623, 2008.
  • Fang, J., Zhang, L. and Li, C., “The combined effect of impregnated rollers configuration and glass fibers surface modification on the properties of continuous glass fibers reinforced polypropylene prepreg composites”, Composites Science and Technology.;197:108259, 2020.
  • Díez-Pascual, A.M., Naffakh, M., Marco, C, Gómez-Fatou, M.A. and Ellis, G.J., “Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review”, Current Opinion in Solid State & Materials Science, 18(2), 62–80, 2014.
  • Pedrazzoli, D. and Pegoretti, A., “Hybridization of short glass fiber polypropylene composites with nanosilica and graphite nanoplatelets”, Journal of Reinforced Plastics and Composites, 33(18), 1682–1695, 2014.
  • Rausch, J., Zhuang, R.C. and Mäder, E., “Application of nanomaterials in sizings for glass fibre/polypropylene hybrid yarn spinning”, Materials Technology, 24(1), 29–35, 2009.
  • Mäder, E., Rothe, C. and Gao, S.L., “Commingled yarns of surface nanostructured glass and polypropylene filaments for effective composite properties”, Journal of Materials Science, 42(19), 8062–8070, 2007.
  • Rasana, N. and Jayanarayanan, K., “Polypropylene/short glass fiber/nanosilica hybrid composites: evaluation of morphology, mechanical, thermal, and transport properties”, Polymer Bulletin, 75(6), 2587–2605, 2018.
  • Qi, Y., Li, J. and Liu, L., “Tensile properties of multilayer-connected biaxial weft knitted fabric reinforced composites for carbon fibers”, Materials & Design, 54, 678–685, 2014.
  • Khondker, O.A., Leong, K.H. and Herszberg, I., “Effects of biaxial deformation of the knitted glass preform on the in-plane mechanical properties of the composite”, Composites Part A: Applied Science and Manufacturing, 32(10), 1513–1523, 2001.
  • Abounaim, M, Diestel, O, Hoffmann, G and Cherif, C., “High performance thermoplastic composite from flat knitted multi-layer textile preform using hybrid yarn”, Composites Science and Technology, 71(4), 511–519, 2011.
  • Hamada, H., Sugimoto, K., Nakai, A., Takeda, N., Gotoh, S. and Ishida, T., “Mechanical properties of knitted fabric composites”, Journal of Reinforced Plastics and Composites, 19(5), 364–376, 2000.
  • Kiss, P., Stadlbauer, W., Burgstaller, C. and Archodoulaki, V.M., “Development of high-performance glass fibre-polypropylene composite laminates: Effect of fibre sizing type and coupling agent concentration on mechanical properties”, Composites Part A: Applied Science and Manufacturing, 138, 106056, 2020.
  • Hufenbach, W., Böhm, R., Thieme, M., Winkler, A, Mäder, E., Rausch, J. and Schade. M., “Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications”, Materials & Design, 32(3), 1468–1476, 2011.
  • Liu, M.H., Li, R., Wang, G., Hou, Z.Y. and Huang, B., “Morphology and dynamic mechanical properties of long glass fiber-reinforced polyamide 6 composites”, Journal of Thermal Analysis and Calorimetry, 126(3), 1281–1288, 2016.
  • Demircan, O., Al-darkazali, A., İnanç, I. and Eskizeybek, V. “Investigation of the effect of CNTs on the mechanical properties of LPET/glass fiber thermoplastic composites”, Journal of Thermoplastic Composite Materials, 33(12), 1652–1673, 2019.
  • Bilisik, K, Erdogan, G and Sapanci, E., “Interlaminar shear properties of nanostitched/nanoprepreg aramid/phenolic composites by short beam method”, Journal of Composite Materials, 53(21), 2941-2957, 2019.
  • Bilisik, K, Erdogan, G and Sapanci, E. “Flexural behavior of 3D para-aramid/phenolic/nano (MWCNT) composites”, RSC Advances, 8, 7213-7224, 2018.
  • Papila, M. Bilge, K., Yenigün, E. O., Şimşek, E. and Menceloğlu, Y. Z., “Structural composites hybridized with epoxy compatible polymer/MWCNT nanofibrous interlayers”, Composites Science and Technology, 72, 1639, 2012.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Articles
Yazarlar

Özgür Demircan 0000-0001-8235-3966

Abdurrahman Yıldız 0000-0002-5420-5939

Proje Numarası Project Numbers: PYO.MUH.1901.16.001 and PYO.MUH.1901.18.008
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 19 Ocak 2024
Kabul Tarihi 26 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APA Demircan, Ö., & Yıldız, A. (2024). MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES. Mugla Journal of Science and Technology, 10(1), 33-41. https://doi.org/10.22531/muglajsci.1422587
AMA Demircan Ö, Yıldız A. MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES. MJST. Haziran 2024;10(1):33-41. doi:10.22531/muglajsci.1422587
Chicago Demircan, Özgür, ve Abdurrahman Yıldız. “MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES”. Mugla Journal of Science and Technology 10, sy. 1 (Haziran 2024): 33-41. https://doi.org/10.22531/muglajsci.1422587.
EndNote Demircan Ö, Yıldız A (01 Haziran 2024) MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES. Mugla Journal of Science and Technology 10 1 33–41.
IEEE Ö. Demircan ve A. Yıldız, “MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES”, MJST, c. 10, sy. 1, ss. 33–41, 2024, doi: 10.22531/muglajsci.1422587.
ISNAD Demircan, Özgür - Yıldız, Abdurrahman. “MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES”. Mugla Journal of Science and Technology 10/1 (Haziran 2024), 33-41. https://doi.org/10.22531/muglajsci.1422587.
JAMA Demircan Ö, Yıldız A. MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES. MJST. 2024;10:33–41.
MLA Demircan, Özgür ve Abdurrahman Yıldız. “MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES”. Mugla Journal of Science and Technology, c. 10, sy. 1, 2024, ss. 33-41, doi:10.22531/muglajsci.1422587.
Vancouver Demircan Ö, Yıldız A. MECHANICAL PROPERTIES OF CNTS INTEGRATED PP/GLASS FIBER REINFORCED BIAXIAL WEFT-KNITTED THERMOPLASTIC COMPOSITES WITH DIFFERENT KNITTING STRUCTURES. MJST. 2024;10(1):33-41.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.