Araştırma Makalesi
BibTex RIS Kaynak Göster

KÜRESEL YAPAY ZEKÂ KÜMELERİ: YETENEK, BECERİLER VE GİRİŞİMCİLİKTEKİ YAPISAL EĞİLİMLER

Yıl 2025, Cilt: 47 Sayı: 3, - , 28.12.2025
https://doi.org/10.14780/muiibd.1766621

Öz

Yapay zekâ (YZ), ülkelerin dijital dönüşüm kapasitesini, inovasyon potansiyelini ve işgücü piyasalarını yeniden şekillendiren stratejik bir alandır. Ancak ülkelerin YZ alanındaki yetenek temelli kapasite farklarının hangi göstergelerle ne düzeyde ayrıştığı, nicel olarak karşılaştırmaya ve sınıflandırmaya yönelik ampirik çalışmalar sınırlıdır. Bu çalışma, bu literatür boşluğunu doldurmayı amaçlayarak, YZ’ye ilişkin beş stratejik gösterge üzerinden ülkeler arasında anlamlı kümeler olup olmadığını analiz etmektedir: İşe alım oranı, beceri yayılımı, yetenek yoğunluğu, net yetenek göçü ve fonlanan YZ girişim sayısı. 2024 dönemine ait 47 ülkenin verilerini kullanarak K-ortalamalar algoritmasıyla kümeleme analizi gerçekleştirilmiş, küme sayısı dirsek yöntemiyle dört olarak belirlenmiştir. Sonuçlar, ülkeler arasında YZ kapasitesi bakımından yapısal, istatistiksel olarak anlamlı ve çok boyutlu ayrışmalar olduğunu göstermektedir. Çalışmada gerçekleştirilen K-ortalamalar kümeleme analizi sonucunda ülkeler, yapay zekâya ilişkin beş temel göstergeye göre dört anlamlı kümeye ayrılmıştır. Bulgular, ülkeler arasındaki farkların yalnızca tekil göstergelere değil, göstergeler arasındaki dengeye ve bütüncül yapıya bağlı olarak şekillendiğini ortaya koymaktadır. Çalışma ayrıca politika önerilerinde bulunmaktadır. Bu çalışma, YZ alanında ülkelerin çok boyutlu konumlarını karşılaştırmalı olarak analiz eden nadir ampirik çalışmalardan biridir ve politika yapıcılar için önceliklendirme ve stratejik planlama açısından önemli bir referans noktası sunmaktadır.

Kaynakça

  • Al-Marzouqi, A. H., & Arabi, A. A. (2024). A Comparative Analysis of the Performance of Leading Countries in Conducting Artificial Intelligence Research. Human Behavior and Emerging Technologies, 2024. https:// doi.org/10.1155/2024/1689353
  • Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., Lovenia, H., Ji, Z., Yu, T., Chung, W., Do, Q. V.,
  • Xu, Y., & Fung, P. (2023). A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity. http://arxiv.org/abs/2302.04023
  • Barnett, V., Lewis, T., & Wiley, J. (1994). Outliers in Statistical Data Second Edition (Second, Vol. 3). Wiley. https://web.archive.org/web/201.312.28193428id_/http://tocs.ulb.tu-darmstadt.de:80/214880745.pdf
  • Becker, G. S. (1994). Human capital revisited. In Human capital: A theoretical and empirical analysis with special reference to education, third edition (pp. 15-28). The University of Chicago Press.
  • Bejaković, P., & Mrnjavac, Ž. (2020). The importance of digital literacy on the labour market. Employee Relations: The International Journal, 42(4), 921–932. https://doi.org/10.1108/ER-07-2019-0274
  • Bholowalia, P., & Kumar, A. (2014). EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. International Journal of Computer Applications (Vol. 105, Issue 9).
  • Bozdogan, H. (1994). Mixture-Model Cluster Analysis Using Model Selection Criteria and a New Informational Measure of Complexity. In Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach (pp. 69–113). Springer Netherlands. https://doi.org/10.1007/978- 94-011-0800-3_3
  • Chen, L., Jiang, M., Jia, F., & Liu, G. (2022). Artificial intelligence adoption in business-to-business marketing: toward a conceptual framework. Journal of Business and Industrial Marketing (Vol. 37, Issue 5, pp. 1025– 1044). Emerald Group Holdings Ltd. https://doi.org/10.1108/JBIM-09-2020-0448
  • Choi, J. D. M. A. U. Z. (2021). The Future of Work in Africa: Harnessing Digital Technologies for an Inclusive World of Work (Vol. 1).
  • Daniel Zhang, Saurabh Mishra, Erik Brynjolfsson, John Etchemendy, Deep Ganguli, Barbara Grosz, Terah Lyons, James Manyika, Juan Carlos Niebles, Michael Sellitto, Yoav Shoham, J. C., & Raymond Perrault. (2021). The AI Index 2021 Annual Report. http://creativecommons.org/licenses/by-nd/4.0/.
  • Djeffal, C., Siewert, M. B., & Wurster, S. (2022). Role of the state and responsibility in governing artificial intelligence: a comparative analysis of AI strategies. Journal of European Public Policy, 29(11), 1799– 1821. https://doi.org/10.1080/13501.763.2022.2094987
  • Ernst, E., Merola, R., & Samaan, D. (2019). Economics of Artificial Intelligence: Implications for the Future of Work. IZA Journal of Labor Policy, 9(1). https://doi.org/10.2478/izajolp-2019-0004
  • Fischer, A. M. (2015). The end of peripheries? On the enduring relevance of structuralism for understanding contemporary global development. Development and change, 46(4), 700-732.
  • Guenduez, A. A., & Mettler, T. (2023). Strategically constructed narratives on artificial intelligence: What stories are told in governmental artificial intelligence policies? Government Information Quarterly, 40(1). https://doi.org/10.1016/j.giq.2022.101719
  • Hossin, S., Arije Ulfy, M., Ali, I., Karim, W., & Karim, M. W. (2021). Challenges in Adopting Artificial Intelligence (AI) in HRM Practices: A study on Bangladesh Perspective. International Fellowship Journal of Interdisciplinary Research, 1(1), 66–73. https://doi.org/10.5281/zenodo.4480245
  • Houde, S., Liao, V., Martino, J., Muller, M., Piorkowski, D., Richards, J., Weisz, J., & Zhang, Y. (2020). Business (mis)Use Cases of Generative AI.
  • Islam, M., Rahman, Md. M., Taher, Md. A., Quaosar, G. M. A. A., & Uddin, Md. A. (2024). Using artificial intelligence for hiring talents in a moderated mechanism. Future Business Journal, 10(1). https://doi. org/10.1186/s43093.024.00303-x
  • Jiao, W., Wang, W., Huang, J., Wang, X., Shi, S., & Tu, Z. (2023). Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine. http://arxiv.org/abs/2301.08745
  • Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science and Management Studies, 1(6). www. ijarcsms.com
  • Leoste, J., Õun, T., Loogma, K., & San Martín López, J. (2021). Designing Training Programs to Introduce Emerging Technologies to Future Workers—A Pilot Study Based on the Example of Artificial Intelligence Enhanced Robotics. Mathematics, 9(22), 2876. https://doi.org/10.3390/math9222876
  • Li, B., Qi, P., Liu, B., Di, S., Liu, J., Pei, J., Yi, J., & Zhou, B. (2023). Trustworthy AI: From Principles to Practices. ACM Computing Surveys (Vol. 55, Issue 9). Association for Computing Machinery. https://doi. org/10.1145/3555803
  • Lund, B., Agbaji, D., & Zoë A. Teel. (2023). Information Literacy, Data Literacy, Privacy Literacy, and ChatGPT: Technology Literacies Align with Perspectives on Emerging Technology Adoption within Communities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4324580
  • Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and libraries? Library Hi Tech News, 40(3), 26–29. https://doi.org/10.1108/LHTN-01-2023-0009
  • Lundvall, B. Å. (2016). The learning economy and the economics of hope. Anthem Press.
  • Mannuru, N. R., Shahriar, S., Teel, Z. A., Wang, T., Lund, B. D., Tijani, S., Pohboon, C. O., Agbaji, D., Alhassan, J., Galley, J., Kousari, R., Ogbadu-Oladapo, L., Saurav, S. K., Srivastava, A., Tummuru, S. P., Uppala, S., & Vaidya, P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development. https://doi. org/10.1177/026.666.69231200628
  • Maslej, N., Fattorini, L., Perrault, R., Gil, Y., Parli, V., Kariuki, N., Capstick, E., Reuel, A., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Carlos Niebles, J., Shoham, Y., Wald, R., Hamrah, A., Santarlasci, L., Betts Lotufo, J., … Oak, S. (2025). The AI Index 2025 Annual Report.
  • Md. Aftab Uddin, M. S. A. Md. K. H. T. I. Md. S. A. H. (2021). The Essentials of Machine Learning in Finance and Accounting. Routledge.
  • Milligan, G. W., & Cooper, M. C. (1985). An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika, 50(2), 159–179. https://doi.org/10.1007/BF02294245
  • Na, S., Xumin, L., & Yong, G. (2010). Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm. 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, 63–67. https://doi.org/10.1109/IITSI.2010.74
  • Pillai, R., & Sivathanu, B. (2020). Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking, 27(9), 2599–2629. https://doi.org/10.1108/BIJ-04-2020-0186
  • Schiff, D. (2022). Education for AI, not AI for Education: The Role of Education and Ethics in National AI Policy Strategies. International Journal of Artificial Intelligence in Education, 32(3), 527–563. https://doi. org/10.1007/s40593.021.00270-2
  • Smyth, P. (1996). Clustering using Monte Carlo Cross-Validation. In Evangelos Simoudis, Jiawei Han, & Usama Fayyad (Eds.), In Proc. 2nd Intl. Conf. Knowl. AAAI Press. www.aaai.org
  • Sugar, C. A., & James, G. M. (2003). Finding the Number of Clusters in a Dataset. Journal of the American Statistical Association, 98(463), 750–763. https://doi.org/10.1198/016.214.503000000666
  • Thilagamani, S., & Shanthi, N. (2010). LITERATURE SURVEY ON ENHANCING CLUSTER QUALITY. International Journal on Computer Science and Engineering, 02(06), 1999–2002.
  • Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the Number of Clusters in a Data Set Via the Gap Statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology, 63(2), 411–423. https:// doi.org/10.1111/1467-9868.00293
  • Varga, A., & Schalk, H. (2004). Knowledge spillovers, agglomeration and macroeconomic growth: An empirical approach. Regional Studies, 38(8), 977-989.
  • Wang, S., Zhang, Y., Xiao, Y., & Liang, Z. (2025). Artificial intelligence policy frameworks in China, the European Union and the United States: An analysis based on structure topic model. Technological Forecasting and Social Change, 212, 123971. https://doi.org/10.1016/j.techfore.2025.123971
  • White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. http://arxiv.org/ abs/2302.11382
  • Wu, W., Huang, T., & Gong, K. (2020). Ethical Principles and Governance Technology Development of AI in China. Engineering (Vol. 6, Issue 3, pp. 302–309). Elsevier Ltd. https://doi.org/10.1016/j.eng.2019.12.015

GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP

Yıl 2025, Cilt: 47 Sayı: 3, - , 28.12.2025
https://doi.org/10.14780/muiibd.1766621

Öz

Artificial intelligence (AI) acts as a strategic catalyst for digital transformation, fostering innovation and redefining labor market dynamics. However, empirical studies that quantitatively compare and classify the extent and nature of cross-country differences in AI talent capacities remain limited. This study aims to address the existing gap in the literature by analyzing the presence of significant clusters among countries based on five strategic AI-related indicators: Hiring, Skill Penetration, Talent Concentration, Talent Migration, and Newly Funded AI Companies. Using 2024 data from 47 countries, a K-means clustering analysis was performed, with the optimal number of clusters identified as four through the elbow method. The results reveal significant structural and multidimensional divergences in AI capacity across countries. Based on the K-means clustering analysis, nations were categorized into four distinct clusters according to the five core AI indicators. The findings indicate that cross-country differences are influenced not only by individual indicators but also by the balance and overall structure among these indicators. The study also offers policy recommendations to support the AI-related development of countries. This research represents one of the few empirical studies that comparatively analyze the multidimensional positioning of countries in AI, providing policymakers with a vital reference point for prioritization and strategic planning.

Kaynakça

  • Al-Marzouqi, A. H., & Arabi, A. A. (2024). A Comparative Analysis of the Performance of Leading Countries in Conducting Artificial Intelligence Research. Human Behavior and Emerging Technologies, 2024. https:// doi.org/10.1155/2024/1689353
  • Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., Lovenia, H., Ji, Z., Yu, T., Chung, W., Do, Q. V.,
  • Xu, Y., & Fung, P. (2023). A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity. http://arxiv.org/abs/2302.04023
  • Barnett, V., Lewis, T., & Wiley, J. (1994). Outliers in Statistical Data Second Edition (Second, Vol. 3). Wiley. https://web.archive.org/web/201.312.28193428id_/http://tocs.ulb.tu-darmstadt.de:80/214880745.pdf
  • Becker, G. S. (1994). Human capital revisited. In Human capital: A theoretical and empirical analysis with special reference to education, third edition (pp. 15-28). The University of Chicago Press.
  • Bejaković, P., & Mrnjavac, Ž. (2020). The importance of digital literacy on the labour market. Employee Relations: The International Journal, 42(4), 921–932. https://doi.org/10.1108/ER-07-2019-0274
  • Bholowalia, P., & Kumar, A. (2014). EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. International Journal of Computer Applications (Vol. 105, Issue 9).
  • Bozdogan, H. (1994). Mixture-Model Cluster Analysis Using Model Selection Criteria and a New Informational Measure of Complexity. In Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach (pp. 69–113). Springer Netherlands. https://doi.org/10.1007/978- 94-011-0800-3_3
  • Chen, L., Jiang, M., Jia, F., & Liu, G. (2022). Artificial intelligence adoption in business-to-business marketing: toward a conceptual framework. Journal of Business and Industrial Marketing (Vol. 37, Issue 5, pp. 1025– 1044). Emerald Group Holdings Ltd. https://doi.org/10.1108/JBIM-09-2020-0448
  • Choi, J. D. M. A. U. Z. (2021). The Future of Work in Africa: Harnessing Digital Technologies for an Inclusive World of Work (Vol. 1).
  • Daniel Zhang, Saurabh Mishra, Erik Brynjolfsson, John Etchemendy, Deep Ganguli, Barbara Grosz, Terah Lyons, James Manyika, Juan Carlos Niebles, Michael Sellitto, Yoav Shoham, J. C., & Raymond Perrault. (2021). The AI Index 2021 Annual Report. http://creativecommons.org/licenses/by-nd/4.0/.
  • Djeffal, C., Siewert, M. B., & Wurster, S. (2022). Role of the state and responsibility in governing artificial intelligence: a comparative analysis of AI strategies. Journal of European Public Policy, 29(11), 1799– 1821. https://doi.org/10.1080/13501.763.2022.2094987
  • Ernst, E., Merola, R., & Samaan, D. (2019). Economics of Artificial Intelligence: Implications for the Future of Work. IZA Journal of Labor Policy, 9(1). https://doi.org/10.2478/izajolp-2019-0004
  • Fischer, A. M. (2015). The end of peripheries? On the enduring relevance of structuralism for understanding contemporary global development. Development and change, 46(4), 700-732.
  • Guenduez, A. A., & Mettler, T. (2023). Strategically constructed narratives on artificial intelligence: What stories are told in governmental artificial intelligence policies? Government Information Quarterly, 40(1). https://doi.org/10.1016/j.giq.2022.101719
  • Hossin, S., Arije Ulfy, M., Ali, I., Karim, W., & Karim, M. W. (2021). Challenges in Adopting Artificial Intelligence (AI) in HRM Practices: A study on Bangladesh Perspective. International Fellowship Journal of Interdisciplinary Research, 1(1), 66–73. https://doi.org/10.5281/zenodo.4480245
  • Houde, S., Liao, V., Martino, J., Muller, M., Piorkowski, D., Richards, J., Weisz, J., & Zhang, Y. (2020). Business (mis)Use Cases of Generative AI.
  • Islam, M., Rahman, Md. M., Taher, Md. A., Quaosar, G. M. A. A., & Uddin, Md. A. (2024). Using artificial intelligence for hiring talents in a moderated mechanism. Future Business Journal, 10(1). https://doi. org/10.1186/s43093.024.00303-x
  • Jiao, W., Wang, W., Huang, J., Wang, X., Shi, S., & Tu, Z. (2023). Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine. http://arxiv.org/abs/2301.08745
  • Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science and Management Studies, 1(6). www. ijarcsms.com
  • Leoste, J., Õun, T., Loogma, K., & San Martín López, J. (2021). Designing Training Programs to Introduce Emerging Technologies to Future Workers—A Pilot Study Based on the Example of Artificial Intelligence Enhanced Robotics. Mathematics, 9(22), 2876. https://doi.org/10.3390/math9222876
  • Li, B., Qi, P., Liu, B., Di, S., Liu, J., Pei, J., Yi, J., & Zhou, B. (2023). Trustworthy AI: From Principles to Practices. ACM Computing Surveys (Vol. 55, Issue 9). Association for Computing Machinery. https://doi. org/10.1145/3555803
  • Lund, B., Agbaji, D., & Zoë A. Teel. (2023). Information Literacy, Data Literacy, Privacy Literacy, and ChatGPT: Technology Literacies Align with Perspectives on Emerging Technology Adoption within Communities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4324580
  • Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and libraries? Library Hi Tech News, 40(3), 26–29. https://doi.org/10.1108/LHTN-01-2023-0009
  • Lundvall, B. Å. (2016). The learning economy and the economics of hope. Anthem Press.
  • Mannuru, N. R., Shahriar, S., Teel, Z. A., Wang, T., Lund, B. D., Tijani, S., Pohboon, C. O., Agbaji, D., Alhassan, J., Galley, J., Kousari, R., Ogbadu-Oladapo, L., Saurav, S. K., Srivastava, A., Tummuru, S. P., Uppala, S., & Vaidya, P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development. https://doi. org/10.1177/026.666.69231200628
  • Maslej, N., Fattorini, L., Perrault, R., Gil, Y., Parli, V., Kariuki, N., Capstick, E., Reuel, A., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Carlos Niebles, J., Shoham, Y., Wald, R., Hamrah, A., Santarlasci, L., Betts Lotufo, J., … Oak, S. (2025). The AI Index 2025 Annual Report.
  • Md. Aftab Uddin, M. S. A. Md. K. H. T. I. Md. S. A. H. (2021). The Essentials of Machine Learning in Finance and Accounting. Routledge.
  • Milligan, G. W., & Cooper, M. C. (1985). An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika, 50(2), 159–179. https://doi.org/10.1007/BF02294245
  • Na, S., Xumin, L., & Yong, G. (2010). Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm. 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, 63–67. https://doi.org/10.1109/IITSI.2010.74
  • Pillai, R., & Sivathanu, B. (2020). Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking, 27(9), 2599–2629. https://doi.org/10.1108/BIJ-04-2020-0186
  • Schiff, D. (2022). Education for AI, not AI for Education: The Role of Education and Ethics in National AI Policy Strategies. International Journal of Artificial Intelligence in Education, 32(3), 527–563. https://doi. org/10.1007/s40593.021.00270-2
  • Smyth, P. (1996). Clustering using Monte Carlo Cross-Validation. In Evangelos Simoudis, Jiawei Han, & Usama Fayyad (Eds.), In Proc. 2nd Intl. Conf. Knowl. AAAI Press. www.aaai.org
  • Sugar, C. A., & James, G. M. (2003). Finding the Number of Clusters in a Dataset. Journal of the American Statistical Association, 98(463), 750–763. https://doi.org/10.1198/016.214.503000000666
  • Thilagamani, S., & Shanthi, N. (2010). LITERATURE SURVEY ON ENHANCING CLUSTER QUALITY. International Journal on Computer Science and Engineering, 02(06), 1999–2002.
  • Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the Number of Clusters in a Data Set Via the Gap Statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology, 63(2), 411–423. https:// doi.org/10.1111/1467-9868.00293
  • Varga, A., & Schalk, H. (2004). Knowledge spillovers, agglomeration and macroeconomic growth: An empirical approach. Regional Studies, 38(8), 977-989.
  • Wang, S., Zhang, Y., Xiao, Y., & Liang, Z. (2025). Artificial intelligence policy frameworks in China, the European Union and the United States: An analysis based on structure topic model. Technological Forecasting and Social Change, 212, 123971. https://doi.org/10.1016/j.techfore.2025.123971
  • White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. http://arxiv.org/ abs/2302.11382
  • Wu, W., Huang, T., & Gong, K. (2020). Ethical Principles and Governance Technology Development of AI in China. Engineering (Vol. 6, Issue 3, pp. 302–309). Elsevier Ltd. https://doi.org/10.1016/j.eng.2019.12.015
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İşletme , İş Sistemleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Uğur Arcagök 0000-0002-4469-9525

Gönderilme Tarihi 15 Ağustos 2025
Kabul Tarihi 13 Kasım 2025
Yayımlanma Tarihi 28 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 47 Sayı: 3

Kaynak Göster

APA Arcagök, U. (2025). GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi, 47(3). https://doi.org/10.14780/muiibd.1766621
AMA Arcagök U. GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi. Aralık 2025;47(3). doi:10.14780/muiibd.1766621
Chicago Arcagök, Uğur. “GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP”. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi 47, sy. 3 (Aralık 2025). https://doi.org/10.14780/muiibd.1766621.
EndNote Arcagök U (01 Aralık 2025) GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi 47 3
IEEE U. Arcagök, “GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP”, Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi, c. 47, sy. 3, 2025, doi: 10.14780/muiibd.1766621.
ISNAD Arcagök, Uğur. “GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP”. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi 47/3 (Aralık2025). https://doi.org/10.14780/muiibd.1766621.
JAMA Arcagök U. GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi. 2025;47. doi:10.14780/muiibd.1766621.
MLA Arcagök, Uğur. “GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP”. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi, c. 47, sy. 3, 2025, doi:10.14780/muiibd.1766621.
Vancouver Arcagök U. GLOBAL AI CLUSTERS: STRUCTURAL PATTERNS IN SKILLS, TALENT, AND ENTREPRENEURSHIP. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi. 2025;47(3).