The changes in BIST-100 index are economically crucial. In this study, classifications will be made with
the assumption that the changes in BIST-100 index are dependent on certain factors. The classifiers to be
used are k-nearest neighbor algorithm, naive Bayes Classifier, logistic regression and C4.5 classifier from
the machine learning methods. Factors affecting the change of BIST-100 index values are deemed as Euro/
Dollar Parity, Gold value (ounce), Crude Oil Prices, Monthly Interest Rates, Inflation Data and DAX,
FTSE, S&P 500 that are widely used in the literature. As a result of the transactions performed via Weka
program, the most successful methods in order are C4.5 classifier algorithm (66.2%) and logistic regression
analysis (65.9%).
Konular | Ekonomi |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 19 Temmuz 2017 |
Gönderilme Tarihi | 19 Temmuz 2017 |
Yayımlandığı Sayı | Yıl 2017 |
Bu web sitesi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.