Araştırma Makalesi
BibTex RIS Kaynak Göster

Paleo-Depositional Environment and Coalification Characteristics of Çilhoroz (Çayırlı - Erzincan) Coals

Yıl 2018, Cilt: 3 Sayı: 1, 11 - 29, 30.06.2018

Öz

This study has done by petrographic methods in
order to determine the paleo-depositional features and coalification process
characteristics of coal deposits around Çilhoroz in Erzincan basin. Coal
bearing units consists of coal and alternating layers (mainly clay, carbonate
shale, limestone) and it located at the Miocene aged Neftlik Formation at
Çayırlı area. Çilhoroz coal seam demonstrate a dominance of dull and banded
dull lithotypes. The coal is predominated by combined xylitic/attrital
lithotypes and by huminite macerals with inertinite and minor liptinite
macerals. Densinite, attrinite, ulminite and corpohuminite were the most
abundant huminite group macerals, respectively. Inertodetrinite and macrinite
were the dominant inertinite macerals, while sporinite and resinite were the
predominant litpinite macerals. The content of mineral matter (such as clay,
pyrit) is variable but generally low (varying from 1% to 7%), it consists
mostly of quartz, calcite, clay minerals, and pyrite. According to the
proximate and ultimate analyses data indicate that the coal is describe by and
in proportion to low ash (avg. 27%), moisture ingredient (avg. 18%) and total
sulphur content (avg. 7.7). The volatile matter yields and carbon contents are
relatively high, while fixed carbon, sulphur and oxygen contents are average
and hydrogen and nitrogen contents are low. The mean huminite reflectance
values of samples (Ro, %) ranged from 0.42 to 0.50, and these coals are
bituminous B/C coal according to ASTM classification. Based on the GI-TPI,
VI-GWI facies diagrams, the Çilhoroz coal formed in the limnic environment,
with the accumulation of dominated vegetable matter and conditions up to
rheotrophic to mesotrophic.

Kaynakça

  • Akgün, F., Olgun, E., Kuşçu, İ., Toprak, V., Göncüoğlu, M.C., (1995), New evidence on the stratigraphy, depo-sitional environment and age of ‘Oligo–Miocene’ cover rocks of the Central Anatolian Crystalline Complex. Bull. Turkish Assoc Petro Geol., 6: 51–68.
  • Akkuş, M., (1964), Erzincan-Tercan Bölgesi Detay Petrol İstikşaf Etüdü Raporu. MTA Raporu, No: 4041, Ankara.
  • Akpınar, Z., Gürsoy, H., Tatar, O., Büyüksaraç, A., Koçbulut, F., Piper, J., (2016), Geophysical analysis of fault geometry and volcanic activity in the Erzincan Basin, Central Turkey: Complex evolution of a mature pull-apart basin, Journal of Asian Earth Sciences 116, 97–114.
  • Aktimur, H.T., (1986), Erzincan, Refahiye ve Kemah Dolayının Jeolojisi. MTA Raporu, No: 7932, Ankara.
  • Aktimur, H.T., Sarıarslan, M., Keçer, M., Turşucu, A., Örçen, S., Yurdakul, M. E., Mutlu, G., Aktimur, S. ve Yıldırım, T., (1995), Erzincan Dolayının Jeolojisi. MTA Raporu, No:9792, Ankara.
  • Akyol, Z. & Birgili, Ş., (1966), Neftlik-2 Kuyu Bitirme Raporu. MTA Raporu, No: 4387, Ankara.
  • Akyol, Z., (1968), Neftlik-3 Kuyu Bitirme Raporu. MTA Raporu, No: 4388, Ankara.
  • Amijaya, H., & Littke, R., (2005), Microfacies and de-positional environment of Tertiary Tanjung Enim low rank coal, South Sumatra Basin, Indonesia. Int. Jour. Of Coal Geol., 261, (3–4), 197–221.
  • Arpat, E., (1964), Erzincan'ın Çayırlı ilçesinin Civarı-nın ve Uzak Kuzeyinin Genel Jeolojisi ve Petrol İm-kanları. MTA Raporu, No: 4046, Ankara.
  • ASTM, (1983), Annual book of ASTM standarts. Gaseous Fuels; Coal and Coke (D–388–82, D–2798–79, D–3172–73, D–2799–72, D–3174–82, D–3175–82): 1916 Race Street, Philadelphia, PA 19103, 05.05, 520p.
  • ASTM, (1991), Annual book of ASTM standarts, Gaseous Fuels; Coal and Coke, 1916 Race Street, Philadelphia, PA 19103, 05.05, 520p.
  • Ay, F., & Yalçın Erik, N., (2015), Fulvic and Humic Acid Substances And Potential Raw Material Of Some Tertiary Turkish Coals From Anatolia, Turkey. The World Multi disciplinary Earth Sciences Symposium – WMESS, 2015, Prag-Çek Cumhuriyeti.
  • Bechtel, A., Saschsenhofer, R.F., Zdravkov, A., Kosto-va, I., and Gratzer, R., (2005), Influence of floral as-semblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza-East lignite (Bulgaria). Org. Ge-ochem., 36, 1498-1522.
  • Bechtel, A., Karayiğit, A.İ., Sachsenhofer, R.F., İnaner, H., Christanis, K., Gratzer, R., (2014), Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the Middle Miocene Çayirhan coal field (Tur-key). Int. J. Coal Geol., 134–135, 46–60.
  • Birgili, Ş., & Yurdakul, M., (1971), Çayırlı Neftlik-4 kuyu bitirme raporu. MTA Raporu No: 4822, Ankara.
  • Bulut, C., (1965), Erzincan İ43 b3, İ44d1, 143 c2 pafta-larını kapsayan bölgenin detay petrol etüdü raporu. MTA Raporu No: 4140, Ankara.
  • Bulut, C. & Akyol, Z., (1966), Çayırlı Neftlik-1 kuyu bitirme raporu. MTA Raporu No: 4386, Ankara.
  • Calder, J.H., Gibling, M.R., and Mukhopadhyay, K., (1991), Peat formation in a Westphalian B piedmont setting, Cumberland basin, Nova Scotia: implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin de la Societe Geologique de France, 162, 283-298.
  • Cameron, A.R., Kalkreuth, W.D., Koukouzas, C., (1984), The petrology of Greek brown coals. Int. J. Coal Geol., 4(3), 173-207.
  • Chou, C.L., (2012), Sulfur in coals: a review of geoc-hemistry and origins. Int. J. Coal Geol., 100, 1–13.
  • Cohen, A.D., Spackman, W., Deben, P., (1984), Occur-rence and distribution of sulfur in peat forming envi-ronment of southern Florida. Int. J. Coal Geol., 4, 73–96.
  • Crosdale, P.J., (1993), Coal maceral ratios as indicator of environment of deposition: do they work for omb-rogenous mires? An example from the Miocene of New Zeeland. Org. Geochem., 20, 797-809.
  • Dai, S., Ren, D., Li, S., Zhao, L., Zhang, Y., (2007), Coal facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China. Science in China D. Earth Sci. Rev., 50 (suppl. II), 144–152.
  • Dehmer, J., (1995), Petrological and organic geochemi-cal investigation of recent peats with known envi-ronments of deposition. Int. J. Coal Geol., 28, 111–138.
  • Demirmen, F., (1965), Çayırlı ilçesi (Erzincan civarı) genel jeolojisi ve petrol olanakları. MTA Raporu No: 4845, Ankara.
  • Deveciler, E., Canpolat, M., Küçükefe, Ş., Karabıyık, N., Kar, H., Ayaz, E., Ünay, E., Tuzcu, S., Karabıyıkoğ-lu, M., Örçen, S., Genç, S. ve Erdoğan, K., (1993), Çayır-lı dolayının (Erzincan ili) jeolojisi. MTA Raporu No: 9672, Ankara.
  • Diessel, C.F K., (1986), The correlation between coal facies and depositional environments. Advances in the Study of the Sydney Basin, Proceedings of 20th Symposium, The University of Newcastle, pp: 19–22
  • Diessel, C.F.K., (1992), Coal-Bearing Depositional Systems, Springer Verlag, Berlin.
  • Flores, D., (2002), Organic facies and depositional palaeoenvironment of lignites from Rio Maior Basin (Portugal). Int. J. Coal Geol.,
  • Gedik, A., (1976), Doğu Anadolu'da açılan stratigrafik istikşaf (açınsama) sondajları, Yeryuvarı ve İnsan, 3, 3, 31-35.
  • Gedik, A., (2008), Kemah-Erzincan Çayırlı yöresi Ter-siyer Birimlerinin Jeolojisi ve Petrol Kaynak Kaya Özellikleri, MTA Dergisi, 137, 1-26.
  • Georgakopoulos, A. & Valceva, S., (2000), Petrograp-hic characteristics of Neogene Lignites from the Pto-lemais and Servia basins, Northern Greece. Energy So-urces, 22, pp. 587–602.
  • Göncüoğlu, M.C., Turhan, N., Şentürk, K., Özcan, A., Uysal, S. ve Yalınız, M.K., (2000), A geotraverse across northwestern Turkey: tectonic units of the Central Sakarya region and their tectonic evolution. In: Boz-kurt, E., Winchester, J.A. & Piper, J.D. (eds.) Tectonics and Magmatism in Turkey and the Surrounding Area. Geolo-gical Society, London, Special Publications. 173, 139–162.
  • Görür, N., Tüysüz, O., Şengör, A.M.C., (1998), Tectonic evolution of the central Anatolian Basins. Int. Geol. Rev., 40, 831-850.
  • Gruber, W., Sachsenhofer, R.F., (2001), Coal deposi-tion in the Noric Depression (Eastern Alps): raised and low-lying mires in Miocene pull-apart basins. Int. J. Coal Geol., 48, 89–114.
  • Gürdal, G., &Bozcu, M., (2011), Petrographic characte-ristics and depositional environment of Miocene Çan coals, Çanakkale-Turkey, Int. J. Coal Geol., 85, 143-160.
  • Hoş-Çebi, F., & Korkmaz, S., (2013), Organic geoche-mistry and depositional environments of Eocene coals in northern Anatolia, Turkey. Fuel, 113, 481-496.
  • Hoş-Çebi, F., (2017), Organic geochemical characteris-tics and paleoclimate conditions of the Miocene coals at the Çan- Durali (Çanakkale), Journal of African Earth Sciences, 129, 117-135.
  • Hökerek, S., & Özçelik O., (2015), "Organic facies cha-racteristics of the Miocene Soma Formation (Lower Lignite Succession-KM2), Soma Coal Basin, western Turkey", Energy Procedia, vol.76, 27-32.
  • I.C.C.P., (1998), International Committee for Coal and Organic Petrology, The new vitrinite classification. Fuel 77, 349–358.
  • Iordanidis, A. & Georgakopoulos, A., (2003), Pliocene lignites from Apofysis mine, Amynteo basin, Northwestern Greece: petrographical characyteristics and depositional environment. Int. J. Coal Geol., 54, 57-68.
  • ISO 7404-2, (2009), Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 2: Methods of Preparing Coal Samples. International Organization for Standardization, ISO, Geneva 8 pp
  • ISO 7404-3, (2009), Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 3: Methods of Determining Maceral Group Composition. International Organization for Standardization, ISO, Ge-neva 4 pp.
  • ISO 7404-5, (2009). Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 5: Methods of Determining Microscopically the Reflec-tance of Vitrinite. International Organization for Stan-dardization, ISO, Geneva 11 pp.
  • Kalaitzidis, S., Bouzinos, A., Papazisimou, S., Chris-tanis, K., (2004), A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece, Int. J. Coal Geol., 57, 243– 263.
  • Kalkreuth, T., Kotis, T., Papanicolaou, C., Kokkinakis, P., (1991), The geology and coal petrology of a Mioce-ne lignite profile at Meliadi Mine, Katerini, Greece. Int. J. Coal Geol., 17 (1), 51–67.
  • Kara-Gülbay, R. (2015) Organic geochemical and petrographical characteristics of coal bearing Oligo- Miocene sequence in the Oltu-Narman Basin (Erzu-rum), NE Turkey. Int. J. Coal Geol., 149, 93-107.
  • Karayiğit, A.İ., Akgün, F., Gayer, R.A., Temel, A., (1999), Quality, palynology, and palaeoenvironmen-tal interpretation of the Ilgin lignite, Turkey. Int. J. Coal Geol., 38, 219–236.
  • Karayiğit, A.İ., Littke, R., Querol, X., Jones, T., Oskay, R.G., Christanis, K., (2017), The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal pet-rography, mineralogy and geochemistry, Int. J. Coal Geol.,173, 110–128.
  • Karayiğit, A.İ., Oskay, R.G., Christanis, K., Tunoğlu, C., Tuncer, A., Bulut, Y., (2015), Palaeoenvironmental reconstruction of the Çardak coal seam, SW Turkey. Int. J. Coal Geol., 139, 3–16.
  • Ketin, İ. (1950) Erzincan ile Aşkale arasındaki saha-nın (1/100.000)'lik 46/4 ve 47/3 paftalarının jeolojisine ait memuar. MTA Raporu, 1950, Ankara.
  • Kolcon, I, & Sachsenhofer, R.F., (1999), Petrography, palynology and depositional environments of the Early Miocene Oberdorf lignite seam (Styrian Basin, Austria). Int. J. Coal Geol., 41: 275–308.
  • Kurtman F., (1962), Kemah Kömür Tuzlası bölgesinin petrol istikşaf etüdüne ait rapor. MTA Rapor No. 4849, Ankara.
  • Lamberson, M.N., Bustin, R.M., Kalkreuth, W., (1991), Lithotype (maceral) composition and variation as correlated with paleowetland environments, Gates Formations, Northeastern British Columbia, Canada. Int. J. Coal Geol., 18, 87–124.
  • Luttig, G. & Steffens, P., (1976), Türkiye Oligosen-Paleosen paleocoğrafya atlasının açıklaması, MTA radyoaktif mineraller ve kömür dairesi bilimsel yayın çevi-rileri. Tercüme no.53, Ankara.
  • Mavridou, E., Antoniadis, P., Khanaqa, P., Riegel, W., Gentzis, T., (2003), Paleoenvironmental interpretation of the Amynteon–Ptolemadia lignite deposit in nort-hern Greece based on its petrographic composition. Int. J. Coal Geol., 56(3–4), 253-268.
  • Moore T., Shearer, J., (2003), Peat/coal type and deposi-tional environment - are they related? Int. J. Coal Geol., 56 (3-4), 233–252.
  • Mukhopadhyay, P.K., (1989), Organic petrography and organic geochemistry of Texas Tertiary coals in relation to depositional environment and hydrocar-bon generation. Tex. Bur. Econ. Geol. Rep. Invest., 188, 68–78.
  • Okay, A.I. & Tüysüz, O., (1999), Tethyan Stures of Northern Turkey. In: Durand B., Jolivet G., Horvoth F., Serrane M (eds) The Mediterranean Basins: Tertrary Extension Within the Alpine Orogen, Geol. Soc., Lond. Spec. Publ., 156, 475-515.
  • Oskay, R.G., Christanis, K., Inaner, H., Salman, M., Taka, M., (2016), Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal de-posit (Central Turkey), Int. J. Coal Geol., 163, 100–111.
  • Palmer, C.A., Tuncalı, E., Dennen, K.O., Coburn, T.C., Finkelman, R.B., (2004), Characterization of Turkish coals: a nationwide perspective, Int. J. Coal Geol., 60, 85–115.
  • Petersen, H.I., & Ratanasthien, B., (2011), Coal facies in a Cenozoic paralic lignite bed, Krabi Basin, sout-hern Thailand: Changing peat-forming conditions related to relative sealevel controlled watertable varia-tions. Int. J. Coal Geol., 87, 2–12.
  • Pisoni, C., (1965), Tercan bölgesinin jeolojisi ve petrol olanakları. MTA Raporu No: 4446, Ankara.
  • Roothan, Ph.J., (1940), Erzurum ve Erzincan vilayetle-rindeki petrol jeolojisi araştırma raporu. MTA Raporu No:1248, Ankara.
  • Sachsenhofer, R.F., Bechtel, A., Reischenbacher, D. Weiss, A., (2003), Evolution of lacustrine systems along the Miocene Mur-Murz fault system (Eastern Alps, Austria) and implications on source rocks in pull-apart basins, Marine and Petroleum Geology, 20 83–110.
  • Scott, A.C., (2002), Coal petrology and the origin of coal macerals: a way ahead? Int. J. Coal Geol., 50 (1–4), 119–134.
  • Sen, S., Naskar, S., Das, S., (2016), Discussion on the concepts in paleoenvironmental reconstruction from coal macerals and petrographic indices, Marine and Petroleum Geology, 73, 371-391.
  • Sia, S.G., & Abdullah, W. H., (2012), Enrichment of arsenic, lead, and antimony in Balingian coal from Sarawak, Malaysia: Modes of occurrence, origin, and partitioning behaviour during coal combustion, Int. J. Coal Geol., 101, 1–15.
  • Silva, M.B., Kalkreuth, W., Holz, M., (2008), Coal pet-rology of coal seams from the Leão- Butiá Coalfield, Lower Permian of the Paraná Basin, Brazil: implicati-ons for coal facies interpretations. Int. J. Coal Geol., 73, 331–358.
  • Singh, V.P, Singh, BD, Singh, A., Singh, M.P., Mat-hews, R.P., Dutta, S., Mahesh, V.A., Mishra, S.S., (2017), Depositional palaeoenvironment and econo-mic potential of Khadsaliya lignite deposits (Sau-rashtra Basin), western India: Based on petrographic, palynofacies and geochemical characteristics, Int. J. Coal Geol., 171-184.
  • Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D. ve Teichmüller, R., (1982), Stach’s textbook of coal petrology, Gebrüder Borntraeger, Berlin, 535p,
  • Stchepinsky, V., (1940), Erzincan mıntıkası linyitleri ve hidrokarbürleri hakkında rapor. MTA Raporu No:1004, Ankara.
  • Stock, A.T., Littke, R., Lücke, A, Zieger, L., Thiele-mannc, T., (2016), Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany, Int. J. Coal Geol., 157, 2–18
  • Súarez-Ruiz, I., Flores, D., Filho, J.G.M., Hackley, P.C., (2012), Review and update of the applications of or-ganic petrology: Part 1, Geological Applications, Int. J. Coal Geol., 99, 54–112.
  • Sykorova, I., Pickel, W., Christanis, K., Wolf, M., Tay-lor, G.H., Flores, D. (2005) Classification of huminite-ICCP system 1994. Int. J. Coal Geol., 62 (1–2), 85–106.
  • Şengör, A.M.C., (1980), Türkiye’ nin neotektoniğinin esasları Türkiye Jeoloji Kurumu yayını, 40
  • Tatar, O., Akpınar, Z., Gürsoy, H., Piper, J.D.A., Koç-bulut, F., Mesci, B.L., Polat, A., Roberts, A.P., (2013), Palaeomagnetic evidence for the neotectonic evolution of the Erzincan Basin, North Anatolian Fault Zone, Turkey. J. Geodynam., 65, 244– 258.
  • Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., (1998), Organic Petrology. Gebrüder Borntraeger, Berlin. 704 pp.
  • Teichmüller, M., (1989), The genesis of coal from the viewpoint of coal petrology. Int. J. Coal Geol., 12 (1–4), 1–87.
  • Teichmüller, M., Taylor, G.H., Littke, R., (1998), The nature of organic matter — macerals and associated minerals. In: Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P. (Eds.), Organic petrology. Gebrüder Borntraeger, Berlin, 704 p.
  • Temiz, H., (2004), The role of thrust ramp reactivation in pull- apart mechanism of the Erzincan basin, North Anatolian Fault Zone, Turkey. Geodinam. Acta, 17 (3), 219–228.
  • Tekin, T., (2002), Source rock potential and organic facies properties of the Oligo-Miocene deposits in the Pasinler- Horasan, Tercan-Aşkale basins (East-Anatolia), ODTÜ, Doktora Tezi, 297 s., Ankara.
  • Tissot, B.P.&Welte, D.H., (1984), Petroleum Formation and Occurrence: Springer-Verlag, Berlin, 699 p.
  • Toprak, S., (2009), Petrographic properties of coal seams in Turkey and their formation, Int. J. Coal Geol.,78, 263-275.
  • Tuncalı, E., Çifci B., Yavuz N., Toprak S., Köker A., Ayciık H., Gençer A., Şahin N., (2002), Chemical and Technological Properties of Turkish Tertiary Coals, MTA Yayınları, Ankara.
  • Türkiye Linyit Envanteri, (2003), MTA yayınları, 356 s.
  • Wüst, R., Hawke, M., Bustin, R., (2001), Comparing maceral ratios from tropical peatlands with assump-tions from coal studies: do classic coal petrographic interpretation methods have to be discarded?. Int. J. Coal Geol., 48, 115–132.
  • Yalçın Erik, N., (2010), Kangal (Sivas) Kömürlerinin Organik Jeokimyasal, Organik Petrografik ve Hidro-karbon Türüm Potansiyelleri, TÜBİTAK Hızlı Destek Projesi; Proje No:108Y111.
  • Yalçın Erik, N., & Sancar, S., (2010), Relationship between coal-quality and organic-geochemical para-meters: a case study of the Hafik Coal Deposits (Sivas Basin, Turkey), Int. J. Coal Geol., 83, 396-414.
  • Yalçın Erik, N., (2011), Hydrocarbon generation po-tential and Miocene–Pliocene paleoenvironments of the Kangal Basin (Central Anatolia, Turkey) Journal of Asian Earth Sciences, 42, 1146–1162
  • Yalçın Erik, N., & Ay, F., (2013), Coal Petrography and Depositional Environments Relationship of the Terti-ary Coals from Anatolides (Tokat Region-Turkey). Goldschmidt 2013, Floransa-İtalya.
  • Zdravkov, A., Bechtel, A., Sachsenhofer, R.F., Kortens-ki, J., Gratzer, R., (2011), Vegetation differences and diagenetic changes between two Bulgarian lignite deposits – insights from coal petrology and biomarker composition. Org. Geochem., 42, 237–254.

Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri

Yıl 2018, Cilt: 3 Sayı: 1, 11 - 29, 30.06.2018

Öz

Bu çalışma Erzincan havzasında, Çilhoroz civarındaki kömürlü istiflerin
paleo-ortam özellikleri ve kömürleşme süreçlerinin belirlenmesi amacıyla
petrografik yöntemlerle gerçekleştirilmiştir. Kömürlü istif, kömür ve
ardalanmalı tabakalardan (başlıca kil, karbonatlı şeyl, kireçtaşı) oluşur ve
Çayırlı sahasında Miyosen yaşlı Neftlik Formasyonu taban seviyelerinde
bulunur.
  Çilhoroz kömür damarı egemen
olarak mat, bantlı mat litotiplerini göstermektedir. Kömür ksilitik/detritik
litotipler ve hüminit maseralleri, ikinci olarak da inertinit maseralleri ile
çok düşük miktarda liptinitlerden oluşmaktadır. Densinit, attrinit, ulminit ve
korpohuminit sırasıyla en bol bulunan huminit grubu maseralleridir.
Inertodetrinit ve makrinit inertinit grubunda egemenken, liptinit grubunda da
sporinit ve resinitler baskın maserallerdir. Mineral madde içeriği (kil ve
pirit gibi) ise genellikle değişken ve düşük (%1-7 arasında) olup, çoğunlukla
kuvars, kalsit, kil mineralleri ve piritten oluşur. Kısa ve elementer analiz
verilerine göre kömür düşük kül (ort. %27), nem (ort. %18) ve kükürt
içeriklidir (ort. % 7.7). Uçucu madde ve karbon bileşimi ortalama değerlerde
iken, hidrojen ve azot içeriği düşüktür. Ortalama hüminit yansıma değerleri
(Ro, %) 0.42-0.50 arasında değişmektedir ve ASTM sınıflamasına göre bitümlü B/C
tipi kömürdür. GI-TPI, VI-GWI fasiyes diyagramlarına göre Çilhoroz kömür damarı
limnik ortamda, başlıca bitkisel maddelerin birikimi ile retrofik-mesotrofik
şartlarda oluşmuştur.

Kaynakça

  • Akgün, F., Olgun, E., Kuşçu, İ., Toprak, V., Göncüoğlu, M.C., (1995), New evidence on the stratigraphy, depo-sitional environment and age of ‘Oligo–Miocene’ cover rocks of the Central Anatolian Crystalline Complex. Bull. Turkish Assoc Petro Geol., 6: 51–68.
  • Akkuş, M., (1964), Erzincan-Tercan Bölgesi Detay Petrol İstikşaf Etüdü Raporu. MTA Raporu, No: 4041, Ankara.
  • Akpınar, Z., Gürsoy, H., Tatar, O., Büyüksaraç, A., Koçbulut, F., Piper, J., (2016), Geophysical analysis of fault geometry and volcanic activity in the Erzincan Basin, Central Turkey: Complex evolution of a mature pull-apart basin, Journal of Asian Earth Sciences 116, 97–114.
  • Aktimur, H.T., (1986), Erzincan, Refahiye ve Kemah Dolayının Jeolojisi. MTA Raporu, No: 7932, Ankara.
  • Aktimur, H.T., Sarıarslan, M., Keçer, M., Turşucu, A., Örçen, S., Yurdakul, M. E., Mutlu, G., Aktimur, S. ve Yıldırım, T., (1995), Erzincan Dolayının Jeolojisi. MTA Raporu, No:9792, Ankara.
  • Akyol, Z. & Birgili, Ş., (1966), Neftlik-2 Kuyu Bitirme Raporu. MTA Raporu, No: 4387, Ankara.
  • Akyol, Z., (1968), Neftlik-3 Kuyu Bitirme Raporu. MTA Raporu, No: 4388, Ankara.
  • Amijaya, H., & Littke, R., (2005), Microfacies and de-positional environment of Tertiary Tanjung Enim low rank coal, South Sumatra Basin, Indonesia. Int. Jour. Of Coal Geol., 261, (3–4), 197–221.
  • Arpat, E., (1964), Erzincan'ın Çayırlı ilçesinin Civarı-nın ve Uzak Kuzeyinin Genel Jeolojisi ve Petrol İm-kanları. MTA Raporu, No: 4046, Ankara.
  • ASTM, (1983), Annual book of ASTM standarts. Gaseous Fuels; Coal and Coke (D–388–82, D–2798–79, D–3172–73, D–2799–72, D–3174–82, D–3175–82): 1916 Race Street, Philadelphia, PA 19103, 05.05, 520p.
  • ASTM, (1991), Annual book of ASTM standarts, Gaseous Fuels; Coal and Coke, 1916 Race Street, Philadelphia, PA 19103, 05.05, 520p.
  • Ay, F., & Yalçın Erik, N., (2015), Fulvic and Humic Acid Substances And Potential Raw Material Of Some Tertiary Turkish Coals From Anatolia, Turkey. The World Multi disciplinary Earth Sciences Symposium – WMESS, 2015, Prag-Çek Cumhuriyeti.
  • Bechtel, A., Saschsenhofer, R.F., Zdravkov, A., Kosto-va, I., and Gratzer, R., (2005), Influence of floral as-semblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza-East lignite (Bulgaria). Org. Ge-ochem., 36, 1498-1522.
  • Bechtel, A., Karayiğit, A.İ., Sachsenhofer, R.F., İnaner, H., Christanis, K., Gratzer, R., (2014), Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the Middle Miocene Çayirhan coal field (Tur-key). Int. J. Coal Geol., 134–135, 46–60.
  • Birgili, Ş., & Yurdakul, M., (1971), Çayırlı Neftlik-4 kuyu bitirme raporu. MTA Raporu No: 4822, Ankara.
  • Bulut, C., (1965), Erzincan İ43 b3, İ44d1, 143 c2 pafta-larını kapsayan bölgenin detay petrol etüdü raporu. MTA Raporu No: 4140, Ankara.
  • Bulut, C. & Akyol, Z., (1966), Çayırlı Neftlik-1 kuyu bitirme raporu. MTA Raporu No: 4386, Ankara.
  • Calder, J.H., Gibling, M.R., and Mukhopadhyay, K., (1991), Peat formation in a Westphalian B piedmont setting, Cumberland basin, Nova Scotia: implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin de la Societe Geologique de France, 162, 283-298.
  • Cameron, A.R., Kalkreuth, W.D., Koukouzas, C., (1984), The petrology of Greek brown coals. Int. J. Coal Geol., 4(3), 173-207.
  • Chou, C.L., (2012), Sulfur in coals: a review of geoc-hemistry and origins. Int. J. Coal Geol., 100, 1–13.
  • Cohen, A.D., Spackman, W., Deben, P., (1984), Occur-rence and distribution of sulfur in peat forming envi-ronment of southern Florida. Int. J. Coal Geol., 4, 73–96.
  • Crosdale, P.J., (1993), Coal maceral ratios as indicator of environment of deposition: do they work for omb-rogenous mires? An example from the Miocene of New Zeeland. Org. Geochem., 20, 797-809.
  • Dai, S., Ren, D., Li, S., Zhao, L., Zhang, Y., (2007), Coal facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China. Science in China D. Earth Sci. Rev., 50 (suppl. II), 144–152.
  • Dehmer, J., (1995), Petrological and organic geochemi-cal investigation of recent peats with known envi-ronments of deposition. Int. J. Coal Geol., 28, 111–138.
  • Demirmen, F., (1965), Çayırlı ilçesi (Erzincan civarı) genel jeolojisi ve petrol olanakları. MTA Raporu No: 4845, Ankara.
  • Deveciler, E., Canpolat, M., Küçükefe, Ş., Karabıyık, N., Kar, H., Ayaz, E., Ünay, E., Tuzcu, S., Karabıyıkoğ-lu, M., Örçen, S., Genç, S. ve Erdoğan, K., (1993), Çayır-lı dolayının (Erzincan ili) jeolojisi. MTA Raporu No: 9672, Ankara.
  • Diessel, C.F K., (1986), The correlation between coal facies and depositional environments. Advances in the Study of the Sydney Basin, Proceedings of 20th Symposium, The University of Newcastle, pp: 19–22
  • Diessel, C.F.K., (1992), Coal-Bearing Depositional Systems, Springer Verlag, Berlin.
  • Flores, D., (2002), Organic facies and depositional palaeoenvironment of lignites from Rio Maior Basin (Portugal). Int. J. Coal Geol.,
  • Gedik, A., (1976), Doğu Anadolu'da açılan stratigrafik istikşaf (açınsama) sondajları, Yeryuvarı ve İnsan, 3, 3, 31-35.
  • Gedik, A., (2008), Kemah-Erzincan Çayırlı yöresi Ter-siyer Birimlerinin Jeolojisi ve Petrol Kaynak Kaya Özellikleri, MTA Dergisi, 137, 1-26.
  • Georgakopoulos, A. & Valceva, S., (2000), Petrograp-hic characteristics of Neogene Lignites from the Pto-lemais and Servia basins, Northern Greece. Energy So-urces, 22, pp. 587–602.
  • Göncüoğlu, M.C., Turhan, N., Şentürk, K., Özcan, A., Uysal, S. ve Yalınız, M.K., (2000), A geotraverse across northwestern Turkey: tectonic units of the Central Sakarya region and their tectonic evolution. In: Boz-kurt, E., Winchester, J.A. & Piper, J.D. (eds.) Tectonics and Magmatism in Turkey and the Surrounding Area. Geolo-gical Society, London, Special Publications. 173, 139–162.
  • Görür, N., Tüysüz, O., Şengör, A.M.C., (1998), Tectonic evolution of the central Anatolian Basins. Int. Geol. Rev., 40, 831-850.
  • Gruber, W., Sachsenhofer, R.F., (2001), Coal deposi-tion in the Noric Depression (Eastern Alps): raised and low-lying mires in Miocene pull-apart basins. Int. J. Coal Geol., 48, 89–114.
  • Gürdal, G., &Bozcu, M., (2011), Petrographic characte-ristics and depositional environment of Miocene Çan coals, Çanakkale-Turkey, Int. J. Coal Geol., 85, 143-160.
  • Hoş-Çebi, F., & Korkmaz, S., (2013), Organic geoche-mistry and depositional environments of Eocene coals in northern Anatolia, Turkey. Fuel, 113, 481-496.
  • Hoş-Çebi, F., (2017), Organic geochemical characteris-tics and paleoclimate conditions of the Miocene coals at the Çan- Durali (Çanakkale), Journal of African Earth Sciences, 129, 117-135.
  • Hökerek, S., & Özçelik O., (2015), "Organic facies cha-racteristics of the Miocene Soma Formation (Lower Lignite Succession-KM2), Soma Coal Basin, western Turkey", Energy Procedia, vol.76, 27-32.
  • I.C.C.P., (1998), International Committee for Coal and Organic Petrology, The new vitrinite classification. Fuel 77, 349–358.
  • Iordanidis, A. & Georgakopoulos, A., (2003), Pliocene lignites from Apofysis mine, Amynteo basin, Northwestern Greece: petrographical characyteristics and depositional environment. Int. J. Coal Geol., 54, 57-68.
  • ISO 7404-2, (2009), Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 2: Methods of Preparing Coal Samples. International Organization for Standardization, ISO, Geneva 8 pp
  • ISO 7404-3, (2009), Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 3: Methods of Determining Maceral Group Composition. International Organization for Standardization, ISO, Ge-neva 4 pp.
  • ISO 7404-5, (2009). Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 5: Methods of Determining Microscopically the Reflec-tance of Vitrinite. International Organization for Stan-dardization, ISO, Geneva 11 pp.
  • Kalaitzidis, S., Bouzinos, A., Papazisimou, S., Chris-tanis, K., (2004), A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece, Int. J. Coal Geol., 57, 243– 263.
  • Kalkreuth, T., Kotis, T., Papanicolaou, C., Kokkinakis, P., (1991), The geology and coal petrology of a Mioce-ne lignite profile at Meliadi Mine, Katerini, Greece. Int. J. Coal Geol., 17 (1), 51–67.
  • Kara-Gülbay, R. (2015) Organic geochemical and petrographical characteristics of coal bearing Oligo- Miocene sequence in the Oltu-Narman Basin (Erzu-rum), NE Turkey. Int. J. Coal Geol., 149, 93-107.
  • Karayiğit, A.İ., Akgün, F., Gayer, R.A., Temel, A., (1999), Quality, palynology, and palaeoenvironmen-tal interpretation of the Ilgin lignite, Turkey. Int. J. Coal Geol., 38, 219–236.
  • Karayiğit, A.İ., Littke, R., Querol, X., Jones, T., Oskay, R.G., Christanis, K., (2017), The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal pet-rography, mineralogy and geochemistry, Int. J. Coal Geol.,173, 110–128.
  • Karayiğit, A.İ., Oskay, R.G., Christanis, K., Tunoğlu, C., Tuncer, A., Bulut, Y., (2015), Palaeoenvironmental reconstruction of the Çardak coal seam, SW Turkey. Int. J. Coal Geol., 139, 3–16.
  • Ketin, İ. (1950) Erzincan ile Aşkale arasındaki saha-nın (1/100.000)'lik 46/4 ve 47/3 paftalarının jeolojisine ait memuar. MTA Raporu, 1950, Ankara.
  • Kolcon, I, & Sachsenhofer, R.F., (1999), Petrography, palynology and depositional environments of the Early Miocene Oberdorf lignite seam (Styrian Basin, Austria). Int. J. Coal Geol., 41: 275–308.
  • Kurtman F., (1962), Kemah Kömür Tuzlası bölgesinin petrol istikşaf etüdüne ait rapor. MTA Rapor No. 4849, Ankara.
  • Lamberson, M.N., Bustin, R.M., Kalkreuth, W., (1991), Lithotype (maceral) composition and variation as correlated with paleowetland environments, Gates Formations, Northeastern British Columbia, Canada. Int. J. Coal Geol., 18, 87–124.
  • Luttig, G. & Steffens, P., (1976), Türkiye Oligosen-Paleosen paleocoğrafya atlasının açıklaması, MTA radyoaktif mineraller ve kömür dairesi bilimsel yayın çevi-rileri. Tercüme no.53, Ankara.
  • Mavridou, E., Antoniadis, P., Khanaqa, P., Riegel, W., Gentzis, T., (2003), Paleoenvironmental interpretation of the Amynteon–Ptolemadia lignite deposit in nort-hern Greece based on its petrographic composition. Int. J. Coal Geol., 56(3–4), 253-268.
  • Moore T., Shearer, J., (2003), Peat/coal type and deposi-tional environment - are they related? Int. J. Coal Geol., 56 (3-4), 233–252.
  • Mukhopadhyay, P.K., (1989), Organic petrography and organic geochemistry of Texas Tertiary coals in relation to depositional environment and hydrocar-bon generation. Tex. Bur. Econ. Geol. Rep. Invest., 188, 68–78.
  • Okay, A.I. & Tüysüz, O., (1999), Tethyan Stures of Northern Turkey. In: Durand B., Jolivet G., Horvoth F., Serrane M (eds) The Mediterranean Basins: Tertrary Extension Within the Alpine Orogen, Geol. Soc., Lond. Spec. Publ., 156, 475-515.
  • Oskay, R.G., Christanis, K., Inaner, H., Salman, M., Taka, M., (2016), Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal de-posit (Central Turkey), Int. J. Coal Geol., 163, 100–111.
  • Palmer, C.A., Tuncalı, E., Dennen, K.O., Coburn, T.C., Finkelman, R.B., (2004), Characterization of Turkish coals: a nationwide perspective, Int. J. Coal Geol., 60, 85–115.
  • Petersen, H.I., & Ratanasthien, B., (2011), Coal facies in a Cenozoic paralic lignite bed, Krabi Basin, sout-hern Thailand: Changing peat-forming conditions related to relative sealevel controlled watertable varia-tions. Int. J. Coal Geol., 87, 2–12.
  • Pisoni, C., (1965), Tercan bölgesinin jeolojisi ve petrol olanakları. MTA Raporu No: 4446, Ankara.
  • Roothan, Ph.J., (1940), Erzurum ve Erzincan vilayetle-rindeki petrol jeolojisi araştırma raporu. MTA Raporu No:1248, Ankara.
  • Sachsenhofer, R.F., Bechtel, A., Reischenbacher, D. Weiss, A., (2003), Evolution of lacustrine systems along the Miocene Mur-Murz fault system (Eastern Alps, Austria) and implications on source rocks in pull-apart basins, Marine and Petroleum Geology, 20 83–110.
  • Scott, A.C., (2002), Coal petrology and the origin of coal macerals: a way ahead? Int. J. Coal Geol., 50 (1–4), 119–134.
  • Sen, S., Naskar, S., Das, S., (2016), Discussion on the concepts in paleoenvironmental reconstruction from coal macerals and petrographic indices, Marine and Petroleum Geology, 73, 371-391.
  • Sia, S.G., & Abdullah, W. H., (2012), Enrichment of arsenic, lead, and antimony in Balingian coal from Sarawak, Malaysia: Modes of occurrence, origin, and partitioning behaviour during coal combustion, Int. J. Coal Geol., 101, 1–15.
  • Silva, M.B., Kalkreuth, W., Holz, M., (2008), Coal pet-rology of coal seams from the Leão- Butiá Coalfield, Lower Permian of the Paraná Basin, Brazil: implicati-ons for coal facies interpretations. Int. J. Coal Geol., 73, 331–358.
  • Singh, V.P, Singh, BD, Singh, A., Singh, M.P., Mat-hews, R.P., Dutta, S., Mahesh, V.A., Mishra, S.S., (2017), Depositional palaeoenvironment and econo-mic potential of Khadsaliya lignite deposits (Sau-rashtra Basin), western India: Based on petrographic, palynofacies and geochemical characteristics, Int. J. Coal Geol., 171-184.
  • Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D. ve Teichmüller, R., (1982), Stach’s textbook of coal petrology, Gebrüder Borntraeger, Berlin, 535p,
  • Stchepinsky, V., (1940), Erzincan mıntıkası linyitleri ve hidrokarbürleri hakkında rapor. MTA Raporu No:1004, Ankara.
  • Stock, A.T., Littke, R., Lücke, A, Zieger, L., Thiele-mannc, T., (2016), Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany, Int. J. Coal Geol., 157, 2–18
  • Súarez-Ruiz, I., Flores, D., Filho, J.G.M., Hackley, P.C., (2012), Review and update of the applications of or-ganic petrology: Part 1, Geological Applications, Int. J. Coal Geol., 99, 54–112.
  • Sykorova, I., Pickel, W., Christanis, K., Wolf, M., Tay-lor, G.H., Flores, D. (2005) Classification of huminite-ICCP system 1994. Int. J. Coal Geol., 62 (1–2), 85–106.
  • Şengör, A.M.C., (1980), Türkiye’ nin neotektoniğinin esasları Türkiye Jeoloji Kurumu yayını, 40
  • Tatar, O., Akpınar, Z., Gürsoy, H., Piper, J.D.A., Koç-bulut, F., Mesci, B.L., Polat, A., Roberts, A.P., (2013), Palaeomagnetic evidence for the neotectonic evolution of the Erzincan Basin, North Anatolian Fault Zone, Turkey. J. Geodynam., 65, 244– 258.
  • Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., (1998), Organic Petrology. Gebrüder Borntraeger, Berlin. 704 pp.
  • Teichmüller, M., (1989), The genesis of coal from the viewpoint of coal petrology. Int. J. Coal Geol., 12 (1–4), 1–87.
  • Teichmüller, M., Taylor, G.H., Littke, R., (1998), The nature of organic matter — macerals and associated minerals. In: Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P. (Eds.), Organic petrology. Gebrüder Borntraeger, Berlin, 704 p.
  • Temiz, H., (2004), The role of thrust ramp reactivation in pull- apart mechanism of the Erzincan basin, North Anatolian Fault Zone, Turkey. Geodinam. Acta, 17 (3), 219–228.
  • Tekin, T., (2002), Source rock potential and organic facies properties of the Oligo-Miocene deposits in the Pasinler- Horasan, Tercan-Aşkale basins (East-Anatolia), ODTÜ, Doktora Tezi, 297 s., Ankara.
  • Tissot, B.P.&Welte, D.H., (1984), Petroleum Formation and Occurrence: Springer-Verlag, Berlin, 699 p.
  • Toprak, S., (2009), Petrographic properties of coal seams in Turkey and their formation, Int. J. Coal Geol.,78, 263-275.
  • Tuncalı, E., Çifci B., Yavuz N., Toprak S., Köker A., Ayciık H., Gençer A., Şahin N., (2002), Chemical and Technological Properties of Turkish Tertiary Coals, MTA Yayınları, Ankara.
  • Türkiye Linyit Envanteri, (2003), MTA yayınları, 356 s.
  • Wüst, R., Hawke, M., Bustin, R., (2001), Comparing maceral ratios from tropical peatlands with assump-tions from coal studies: do classic coal petrographic interpretation methods have to be discarded?. Int. J. Coal Geol., 48, 115–132.
  • Yalçın Erik, N., (2010), Kangal (Sivas) Kömürlerinin Organik Jeokimyasal, Organik Petrografik ve Hidro-karbon Türüm Potansiyelleri, TÜBİTAK Hızlı Destek Projesi; Proje No:108Y111.
  • Yalçın Erik, N., & Sancar, S., (2010), Relationship between coal-quality and organic-geochemical para-meters: a case study of the Hafik Coal Deposits (Sivas Basin, Turkey), Int. J. Coal Geol., 83, 396-414.
  • Yalçın Erik, N., (2011), Hydrocarbon generation po-tential and Miocene–Pliocene paleoenvironments of the Kangal Basin (Central Anatolia, Turkey) Journal of Asian Earth Sciences, 42, 1146–1162
  • Yalçın Erik, N., & Ay, F., (2013), Coal Petrography and Depositional Environments Relationship of the Terti-ary Coals from Anatolides (Tokat Region-Turkey). Goldschmidt 2013, Floransa-İtalya.
  • Zdravkov, A., Bechtel, A., Sachsenhofer, R.F., Kortens-ki, J., Gratzer, R., (2011), Vegetation differences and diagenetic changes between two Bulgarian lignite deposits – insights from coal petrology and biomarker composition. Org. Geochem., 42, 237–254.
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Nazan Yalcın Erik

Faruk Ay Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 3 Sayı: 1

Kaynak Göster

APA Yalcın Erik, N., & Ay, F. (2018). Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri. Mühendislik Ve Yer Bilimleri Dergisi, 3(1), 11-29.
AMA Yalcın Erik N, Ay F. Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri. MYBD - JEES. Haziran 2018;3(1):11-29.
Chicago Yalcın Erik, Nazan, ve Faruk Ay. “Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı Ve Kömürleşme Süreci Özellikleri”. Mühendislik Ve Yer Bilimleri Dergisi 3, sy. 1 (Haziran 2018): 11-29.
EndNote Yalcın Erik N, Ay F (01 Haziran 2018) Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri. Mühendislik ve Yer Bilimleri Dergisi 3 1 11–29.
IEEE N. Yalcın Erik ve F. Ay, “Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri”, MYBD - JEES, c. 3, sy. 1, ss. 11–29, 2018.
ISNAD Yalcın Erik, Nazan - Ay, Faruk. “Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı Ve Kömürleşme Süreci Özellikleri”. Mühendislik ve Yer Bilimleri Dergisi 3/1 (Haziran 2018), 11-29.
JAMA Yalcın Erik N, Ay F. Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri. MYBD - JEES. 2018;3:11–29.
MLA Yalcın Erik, Nazan ve Faruk Ay. “Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı Ve Kömürleşme Süreci Özellikleri”. Mühendislik Ve Yer Bilimleri Dergisi, c. 3, sy. 1, 2018, ss. 11-29.
Vancouver Yalcın Erik N, Ay F. Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri. MYBD - JEES. 2018;3(1):11-29.