Araştırma Makalesi
BibTex RIS Kaynak Göster

Haar wavelet collocation method for the approximate solutions of Emden-Fowler type equations

Yıl 2017, , 37 - 44, 30.10.2017
https://doi.org/10.28978/nesciences.349267

Öz

This paper investigates the Haar wavelet collocation method (HWCM) to obtain approximate
solution of the linear Emden-Fowler type equations. To show the efficiency and accuracy of the
proposed method, some problems are solved and the obtained solutions are compared with the
approximate solutions obtained by using the other numerical methods as well as the exact solutions
of the problems.

Kaynakça

  • Ahamed, M. S., Hasan, M.K. , Alam, M. S., (2017) A New Approach to Homotopy Perturbation Method for Solving Emden–Fowler Equations., Applied Mathematical Sciences 11.40: 1955-1964.
  • Bataineh, A. S., Mohd, S. M. N., Hashim, I., (2009) Homotopy analysis method for singular IVPs of Emden–Fowler type. Communications in Nonlinear Science and Numerical Simulation 14.: 1121-1131.
  • Chang, P., Piau, P, (2008) Haar wavelet matrices designation in numerical solution of ordinary differential equations, IAENG International Journal of Applied Mathematics 38.3 (2008): 164-168.
  • Chen, C.F., Hsiao, C.H., (1997) Haar wavelet method for solving lumped and distributedparameter systems, IEE Proc.: Part D 144 (1) 87–94.
  • Chowdhury, M. S. H., Hashim, I., (2009) Solutions of Emden–Fowler equations by homotopyperturbation method. Nonlinear Analysis: Real World Applications 10.1: 104-115.
  • Hsiao, C. H., (2004) Haar wavelet approach to linear stiff systems. Mathematics and Computers in Simulation vol 64, pp. 561-567.
  • Ibis, B., (2012) Approximate analytical solutions for nonlinear Emden-Fowler type equations by differential transform method. arXiv preprint arXiv:1211.3521.
  • Iqbal, S., Javed, A., (2011) Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation. Applied Mathematics and Computation 217.19: 7753-7761.
  • Lepik, U., (2008) Haar wavelet method for solving higher order differential equations Int. J. Math. Comput 1 : 84-94.
  • Lepik, U., (2005) Numerical solution of differential equations using Haar wavelets. Mathematics and Computers in Simulation vol 68, pp. 127-143.
  • Lepik, U., (2009) Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput. 214: 468–478.
  • Li, Y., Zhao, W., (2010) Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput. 216 2276–2285.
  • Rehman, M. U., Khan, R. A., A., (2012) numerical method for solving boundary value problems for fractional differential equations. Applied Mathematical Modelling, 36(3), 894-907.
  • Tabrizidooz, H. R., Marzban, H. R., Razzaghi, M., (2009) Solution of the generalized Emden– Fowler equations by the hybrid functions method. Physica Scripta 80.2: 025001.
  • Wazwaz, A. M., Rach, R., Bougoffa, L., Duan, J. S., (2014) Solving the Lane–Emden–Fowler type equations of higher orders by the Adomian decomposition method. Comput. Model. Eng. Sci.(CMES) 100.6: 507-529.
  • Wazwaz, A.M., (2005) Adomian decomposition method for a reliable treatment of the Emden–Fowler equation”, Appl. Math. Comput. 161, 543–560. Wazwaz, A.M., (2005) Analytical solution for the time-dependent Emden–Fowler type of equations by Adomian decomposition method, Appl. Math.Comput. 166 (2005) 638–651. Wazwaz, A.M., (2015) Solving Two Emden-Fowler Type Equations of Third Order by the Variational Iteration Method. Applied Mathematics & Information Sciences 9.5: 2429.
Yıl 2017, , 37 - 44, 30.10.2017
https://doi.org/10.28978/nesciences.349267

Öz

Kaynakça

  • Ahamed, M. S., Hasan, M.K. , Alam, M. S., (2017) A New Approach to Homotopy Perturbation Method for Solving Emden–Fowler Equations., Applied Mathematical Sciences 11.40: 1955-1964.
  • Bataineh, A. S., Mohd, S. M. N., Hashim, I., (2009) Homotopy analysis method for singular IVPs of Emden–Fowler type. Communications in Nonlinear Science and Numerical Simulation 14.: 1121-1131.
  • Chang, P., Piau, P, (2008) Haar wavelet matrices designation in numerical solution of ordinary differential equations, IAENG International Journal of Applied Mathematics 38.3 (2008): 164-168.
  • Chen, C.F., Hsiao, C.H., (1997) Haar wavelet method for solving lumped and distributedparameter systems, IEE Proc.: Part D 144 (1) 87–94.
  • Chowdhury, M. S. H., Hashim, I., (2009) Solutions of Emden–Fowler equations by homotopyperturbation method. Nonlinear Analysis: Real World Applications 10.1: 104-115.
  • Hsiao, C. H., (2004) Haar wavelet approach to linear stiff systems. Mathematics and Computers in Simulation vol 64, pp. 561-567.
  • Ibis, B., (2012) Approximate analytical solutions for nonlinear Emden-Fowler type equations by differential transform method. arXiv preprint arXiv:1211.3521.
  • Iqbal, S., Javed, A., (2011) Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation. Applied Mathematics and Computation 217.19: 7753-7761.
  • Lepik, U., (2008) Haar wavelet method for solving higher order differential equations Int. J. Math. Comput 1 : 84-94.
  • Lepik, U., (2005) Numerical solution of differential equations using Haar wavelets. Mathematics and Computers in Simulation vol 68, pp. 127-143.
  • Lepik, U., (2009) Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput. 214: 468–478.
  • Li, Y., Zhao, W., (2010) Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput. 216 2276–2285.
  • Rehman, M. U., Khan, R. A., A., (2012) numerical method for solving boundary value problems for fractional differential equations. Applied Mathematical Modelling, 36(3), 894-907.
  • Tabrizidooz, H. R., Marzban, H. R., Razzaghi, M., (2009) Solution of the generalized Emden– Fowler equations by the hybrid functions method. Physica Scripta 80.2: 025001.
  • Wazwaz, A. M., Rach, R., Bougoffa, L., Duan, J. S., (2014) Solving the Lane–Emden–Fowler type equations of higher orders by the Adomian decomposition method. Comput. Model. Eng. Sci.(CMES) 100.6: 507-529.
  • Wazwaz, A.M., (2005) Adomian decomposition method for a reliable treatment of the Emden–Fowler equation”, Appl. Math. Comput. 161, 543–560. Wazwaz, A.M., (2005) Analytical solution for the time-dependent Emden–Fowler type of equations by Adomian decomposition method, Appl. Math.Comput. 166 (2005) 638–651. Wazwaz, A.M., (2015) Solving Two Emden-Fowler Type Equations of Third Order by the Variational Iteration Method. Applied Mathematics & Information Sciences 9.5: 2429.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm 2
Yazarlar

Sertan Alkan

Yayımlanma Tarihi 30 Ekim 2017
Gönderilme Tarihi 4 Kasım 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Alkan, S. (2017). Haar wavelet collocation method for the approximate solutions of Emden-Fowler type equations. Natural and Engineering Sciences, 2(3), 37-44. https://doi.org/10.28978/nesciences.349267

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015