Derleme
BibTex RIS Kaynak Göster

Artificial Intelligence Applications in Pregnancy: Prenatal Monitoring in the Era of Digital Health

Yıl 2026, Cilt: 2 Sayı: 1, 19 - 24, 29.01.2026

Öz

Pregnancy spans approximately 40 weeks and consists of three trimesters. During this period, the health of the mother and the safety of both the mother and fetus must be carefully monitored and managed. Pregnant women should receive comprehensive prenatal care, where clinical data, regular laboratory tests, ultrasound images, and other important information that can help in making accurate clinical decisions are thoroughly evaluated. However, the data obtained during pregnancy—such as ultrasound images, laboratory tests, and Electronic Health Records—can be diverse and complex, making it difficult to analyze the data effectively. Artificial intelligence (AI)-based technologies can assist in analyzing this heterogeneous data. AI refers to technologies that enable machines to learn, make decisions, and solve problems in a manner similar to human intelligence. These technologies have the potential to support doctors in making informed decisions regarding medical diagnoses and treatment options for pregnant women. Although AI has various applications in healthcare, there is limited information in the current literature regarding its use during pregnancy. In the literature, the use of AI in different obstetric fields is listed as follows: prenatal diagnosis, fetal heart rate monitoring, prediction and management of pregnancy-related complications (such as preeclampsia, preterm birth, gestational diabetes, and placenta accreta spectrum), and labor. It can be said that AI is a promising tool for assisting in clinical practice. However, the evidence reported to date is quite limited, and further studies are needed to validate the clinical applicability of AI. Additionally, clinical training designed for using these systems should be better provided, and evidence-based guidelines should be developed to enhance the strengths of AI systems and minimize their limitations. The aim of this study is to examine the use of AI-based technologies in pregnancy and their integration into clinical practice, evaluating the potential impacts of these technologies on prenatal diagnosis, complication management, and treatment decisions.

Kaynakça

  • Al-Ofi, E. A., Mosli, H. H., Ghamri, K. A., & Ghazali, S. M. (2019). Management of postprandial hyperglycemia and weight gain in women with gestational diabetes mellitus using a novel telemonitoring system. Journal of International Medical Research, 47(2), 754-764.
  • Atkinson, J., Hastie, R., Walker, S., Lindquist, A., & Tong, S. (2023). Telehealth in antenatal care: recent insights and advances. BMC Medicine, 21(1), 332.
  • Fatemi, A., Nasiri-Amiri, F., Faramarzi, M., Chehrazi, M., Adib, H., & Pahlavan, Z. (2023). Comparing the effectiveness of virtual and semi-attendance stress inoculation training techniques in improving the symptoms of anxiety, depression, and stress of pregnant women with psychological distress: A multicenter randomized controlled trial. BMC Pregnancy and Childbirth, 23, 346.
  • Galle, A., Semaan, A., Huysmans, E., Audet, C., Asefa, A., Delvaux, T., ... & Benova, L. (2021). A double-edged sword—telemedicine for maternal care during COVID-19: findings from a global mixed-methods study of healthcare providers. BMJ Global Health, 6(2), e004575.
  • Giaxi, P., Vivilaki, V., Sarella, A., Harizopoulou, V., & Gourounti, K. (2025). Artificial intelligence and machine learning: An updated systematic review of their role in obstetrics and midwifery. Cureus, 17(3), e80394.
  • Güneş Öztürk, G., Akyıldız, D., & Karacam, Z. (2024). Yüksek riskli gebelikte telesağlık uygulamalarının gebelik sonuçlarına ve maliyetlerine etkisi: Sistematik bir inceleme ve meta-analiz. Journal of Telemedicine and Telecare, 30(4), 607-630.
  • He, F., Wang, Y., Xiu, Y., Sinclair, Y., & Chen, L. (2021). Artificial intelligence in prenatal ultrasound diagnosis. Frontiers in Medicine, 8, 729978.
  • Lowery, C., DeNicola, N., & The American College of Obstetricians and Gynecologists. (2020). Implementing telehealth in practice. Obstetrics & Gynecology, 135(2), e73-e79.
  • Miskeen, E., Alfaifi, J., Alhuian, D. M., Alghamdi, M., Alharthi, M. H., Alshahrani, N. A., ... & Abbas, M. (2025). Prospective Applications of Artificial Intelligence In Fetal Medicine: A Scoping Review of Recent Updates. International Journal of General Medicine, 237-245.
  • Mohamed, H., Ismail, A., Sutan, R., Rahman, R. A., & Juval, K. (2025). A scoping review of digital technologies in antenatal care: recent progress and applications of digital technologies. BMC Pregnancy and Childbirth, 25(1), 153.
  • Rasekaba, T. M., Furler, J., Young, D., Liew, D., Gray, K., Blackberry, I., & Lim, W. K. (2018). Using technology to support care in gestational diabetes mellitus: Quantitative outcomes of an exploratory randomized control trial of adjunct telemedicine for gestational diabetes mellitus (TeleGDM). Diabetes Research and Clinical Practice, 142, 276-285.
  • Sarno, L., et al. (2023). Use of artificial intelligence in obstetrics: Not quite ready for prime time. American Journal of Obstetrics & Gynecology MFM, 5(2), 100792.
  • Sinclair, M., Baumgartner, C. F., Matthew, J., et al. (2018). Human-level performance on automatic head biometrics in fetal ultrasound using fully convolutional neural networks. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 714–717). IEEE.
  • The American College of Obstetricians and Gynecologists. (2023). ACOG gains ground on expanding telehealth. https://www.acog.org/en/News/News-Articles/2020/08/ACOG-Gains-Ground-on-Expanding-Telehealth
  • United Kingdom Engineering and Physical Sciences Research Council. (2022, December 12). Artificial intelligence technologies. https://epsrc.ukri.org
  • Van Den Heuvel, J. F., Groenhof, T. K., Veerbeek, J. H., Van Solinge, W. W., Lely, A. T., Franx, A., & Bekker, M. N. (2018). Yeni nesil perinatal bakım olarak e-Sağlık: Literatüre genel bir bakış. Journal of Medical Internet Research, 20(6), e202.
  • Zhang, L., Ye, X., Lambrou, T., Duan, W., Allinson, N., & Dudley, N. J. (2016). A supervised texton based approach for automatic segmentation and measurement of the fetal head and femur in 2D ultrasound images. Physics in Medicine & Biology, 61(3), 1095–1115.
  • Zhang, Y., Lin, Y. Y., Lal, L., Swint, J. M., Tucker, T., Ivory, D. M., ... & Collier, C. (2024). Feasibility of remote blood pressure monitoring for detection and management of maternal hypertension in a predominantly Black, rural and Medicaid population in Mississippi. Telemedicine and e-Health, 30(7), e2096-e2102.

Artificial Intelligence Applications in Pregnancy: Prenatal Monitoring in the Era of Digital Health*

Yıl 2026, Cilt: 2 Sayı: 1, 19 - 24, 29.01.2026

Öz

Gebelik, yaklaşık 40 hafta süren, üç trimesterden oluşan bir dönemi kapsar. Bu dönemde, annenin sağlığı, anne ve fetüsün güvenliği açısından dikkatli bir şekilde izlenmeli ve yönetilmelidir. Gebeler, klinik verilerin, düzenli laboratuvar testlerinin, ultrason görüntülerinin ve doğru klinik kararlar almak için yardımcı olabilecek diğer önemli bilgilerin kapsamlı bir şekilde değerlendirildiği bir prenatal bakım almalıdır. Ancak, gebelik sırasında elde edilen veriler—ultrason görüntüleri, laboratuvar testleri ve Elektronik Sağlık Kayıtları gibi—çok çeşitli ve karmaşık olabilir, böylelikle verilerin analizini elde etmek zorlaşmaktadır. Yapay zeka tabanlı teknolojiler, bu heterojen verileri analiz etmekte yardımcı olabilir. Yapay zeka, makinelerin insan benzeri zekâ ile öğrenmesini, karar almasını ve problemleri çözmesini sağlayan teknolojilerin tümünü ifade eder. Bu teknolojiler, tıbbi tanılarda ve gebelikteki kadınlar için tedavi seçenekleri konusunda doktorlara bilinçli kararlar alma konusunda destek olma potansiyeline sahiptir. Yapay zeka, sağlık hizmetlerinde çeşitli uygulamalara bulunmasına rağmen mevcut literatür incelendiğinde gebelikte yapay zeka kullanımına dair sınırlı bilgi mevcuttur. Literatürde yapay zekanın farklı obstetrik alanlardaki kullanımı şu şekilde sıralanmıştır: prenatal tanı, fetüs kalp atımı izleme, gebelikle ilişkili komplikasyonların (preeklampsi, erken doğum, gestasyonel diyabet ve plasenta akreta spektrumu) tahmin ve yönetimi ve doğum. Yapay zekanın klinik pratiğe yardımcı olmak için umut verici bir araç olduğu söylenebilir. Fakat günümüzde rapor edilen kanıtlar oldukça sınırlıdır ve yapay zekanın klinik uygulanabilirliğini doğrulamak için daha fazla çalışmaya ihtiyaç duyulmaktadır. Ayrıca, bu sistemleri kullanmak üzere tasarlanmış klinik eğitimlerin daha iyi bir şekilde verilmesi sağlanmalı ve bu konuyla ilgili kanıta dayalı kılavuzlar üretilerek, yapay zeka sistemlerinin güçlü yönleri artırılmalı ve sınırlamaları minimize edilmelidir. Bu çalışmanın amacı, gebelikte yapay zeka tabanlı teknolojilerin kullanımını ve klinik pratiğe entegrasyonunu inceleyerek, bu teknolojilerin prenatal tanı, komplikasyon yönetimi ve tedavi kararları üzerindeki potansiyel etkilerini değerlendirmektir.

Kaynakça

  • Al-Ofi, E. A., Mosli, H. H., Ghamri, K. A., & Ghazali, S. M. (2019). Management of postprandial hyperglycemia and weight gain in women with gestational diabetes mellitus using a novel telemonitoring system. Journal of International Medical Research, 47(2), 754-764.
  • Atkinson, J., Hastie, R., Walker, S., Lindquist, A., & Tong, S. (2023). Telehealth in antenatal care: recent insights and advances. BMC Medicine, 21(1), 332.
  • Fatemi, A., Nasiri-Amiri, F., Faramarzi, M., Chehrazi, M., Adib, H., & Pahlavan, Z. (2023). Comparing the effectiveness of virtual and semi-attendance stress inoculation training techniques in improving the symptoms of anxiety, depression, and stress of pregnant women with psychological distress: A multicenter randomized controlled trial. BMC Pregnancy and Childbirth, 23, 346.
  • Galle, A., Semaan, A., Huysmans, E., Audet, C., Asefa, A., Delvaux, T., ... & Benova, L. (2021). A double-edged sword—telemedicine for maternal care during COVID-19: findings from a global mixed-methods study of healthcare providers. BMJ Global Health, 6(2), e004575.
  • Giaxi, P., Vivilaki, V., Sarella, A., Harizopoulou, V., & Gourounti, K. (2025). Artificial intelligence and machine learning: An updated systematic review of their role in obstetrics and midwifery. Cureus, 17(3), e80394.
  • Güneş Öztürk, G., Akyıldız, D., & Karacam, Z. (2024). Yüksek riskli gebelikte telesağlık uygulamalarının gebelik sonuçlarına ve maliyetlerine etkisi: Sistematik bir inceleme ve meta-analiz. Journal of Telemedicine and Telecare, 30(4), 607-630.
  • He, F., Wang, Y., Xiu, Y., Sinclair, Y., & Chen, L. (2021). Artificial intelligence in prenatal ultrasound diagnosis. Frontiers in Medicine, 8, 729978.
  • Lowery, C., DeNicola, N., & The American College of Obstetricians and Gynecologists. (2020). Implementing telehealth in practice. Obstetrics & Gynecology, 135(2), e73-e79.
  • Miskeen, E., Alfaifi, J., Alhuian, D. M., Alghamdi, M., Alharthi, M. H., Alshahrani, N. A., ... & Abbas, M. (2025). Prospective Applications of Artificial Intelligence In Fetal Medicine: A Scoping Review of Recent Updates. International Journal of General Medicine, 237-245.
  • Mohamed, H., Ismail, A., Sutan, R., Rahman, R. A., & Juval, K. (2025). A scoping review of digital technologies in antenatal care: recent progress and applications of digital technologies. BMC Pregnancy and Childbirth, 25(1), 153.
  • Rasekaba, T. M., Furler, J., Young, D., Liew, D., Gray, K., Blackberry, I., & Lim, W. K. (2018). Using technology to support care in gestational diabetes mellitus: Quantitative outcomes of an exploratory randomized control trial of adjunct telemedicine for gestational diabetes mellitus (TeleGDM). Diabetes Research and Clinical Practice, 142, 276-285.
  • Sarno, L., et al. (2023). Use of artificial intelligence in obstetrics: Not quite ready for prime time. American Journal of Obstetrics & Gynecology MFM, 5(2), 100792.
  • Sinclair, M., Baumgartner, C. F., Matthew, J., et al. (2018). Human-level performance on automatic head biometrics in fetal ultrasound using fully convolutional neural networks. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 714–717). IEEE.
  • The American College of Obstetricians and Gynecologists. (2023). ACOG gains ground on expanding telehealth. https://www.acog.org/en/News/News-Articles/2020/08/ACOG-Gains-Ground-on-Expanding-Telehealth
  • United Kingdom Engineering and Physical Sciences Research Council. (2022, December 12). Artificial intelligence technologies. https://epsrc.ukri.org
  • Van Den Heuvel, J. F., Groenhof, T. K., Veerbeek, J. H., Van Solinge, W. W., Lely, A. T., Franx, A., & Bekker, M. N. (2018). Yeni nesil perinatal bakım olarak e-Sağlık: Literatüre genel bir bakış. Journal of Medical Internet Research, 20(6), e202.
  • Zhang, L., Ye, X., Lambrou, T., Duan, W., Allinson, N., & Dudley, N. J. (2016). A supervised texton based approach for automatic segmentation and measurement of the fetal head and femur in 2D ultrasound images. Physics in Medicine & Biology, 61(3), 1095–1115.
  • Zhang, Y., Lin, Y. Y., Lal, L., Swint, J. M., Tucker, T., Ivory, D. M., ... & Collier, C. (2024). Feasibility of remote blood pressure monitoring for detection and management of maternal hypertension in a predominantly Black, rural and Medicaid population in Mississippi. Telemedicine and e-Health, 30(7), e2096-e2102.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ebelik (Diğer)
Bölüm Derleme
Yazarlar

Sibel Akgül Kartal 0000-0001-8938-3578

Betül Ekinci

Beyza Nur Erişiş

Melek Eren

Gönderilme Tarihi 19 Temmuz 2025
Kabul Tarihi 20 Aralık 2025
Yayımlanma Tarihi 29 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 2 Sayı: 1

Kaynak Göster

APA Akgül Kartal, S., Ekinci, B., Erişiş, B. N., Eren, M. (2026). Artificial Intelligence Applications in Pregnancy: Prenatal Monitoring in the Era of Digital Health. Northern Journal of Health Sciences, 2(1), 19-24.