Araştırma Makalesi
BibTex RIS Kaynak Göster

#artificialintelligence in digital traces: Network analysis of artificial intelligence perceptions

Yıl 2024, Sayı: 13, 19 - 34, 30.06.2024

Öz

Artificial intelligence is a technology that predicts human cognitive processes and behaviors and integrates them into computer systems. Artificial intelligence technology is a popular field that is used extensively in today's world, where we can observe its effects in many disciplines. In addition, it is thought that artificial intelligence, which can offer fast and easy solutions in daily life dynamics, attracts attention in the digital world and will increase its influence in individual life day by day. From this point of view, in this study, the perceptions of users in online environments in the digital traces of #artificial intelligence that they have left on the X platform, the meaning they attribute to the concept, and the themes around which the traces are concentrated are examined by social network analysis method. In addition, the elements related to the perceptions of users' #artificial intelligence digital traces on X, an online platform, the structure of the network and the groups formed in the network are visualized. In the data set obtained in line with the aim of the research, the most used hashtags were first identified and user perceptions were tried to be revealed. By determining the most reposted posts on the subject, the themes emphasized in the reposted posts were given and perceptions about the concept were revealed. In order to learn the prominent elements in the posts made by users on X with the hashtag #artificialintelligence, the most frequently used words were discovered and perceptions were tried to be determined. Other analyses conducted in line with the purpose of the study are detailed in the findings section. Immediately after the findings, in the conclusion section, important insights on user perceptions of the hashtag #artificialintelligence obtained through network analysis are presented.

Kaynakça

  • Airoldi, M. (2018). Ethnography and the digital fields of social media. International Journal of Social Research Methodology, 21(6), 661-673.
  • Berente, N., Gu, B., Recker, J. & Santhanam, R. (2021). Managing artificial ıntelligence. MIS Quarterly, 45(3), 1433-1450.
  • Bollier, D. & Firestone, C. M. (2010). The promise and peril of big data. Washington, DC: Aspen Institute, Communications and Society Program.
  • Caliandro, A. & Gandini, A. (2016). Qualitative research in digital environments: A research toolkit. New York: Routledge.
  • Caner, S. & Bhatti, F. (2020). A conceptual framework on defining businesses strategy for artificial intelligence. Contemporary Management Research, 16(3), 175-206.
  • Chadwick, S., Fenton, A., Dron, R. & Ahmed, W. (2021). Social media conversations about high engagement sports team brands. IIM Kozhikode Society & Management Review, 10(2), 178-191.
  • Chollet, F. (2019). On the measure of intelligence. arXiv preprint arXiv:1911.01547.
  • Chui, M., Manyika, J., & Miremadi, M. (2018). What AI can and can’t do (yet) for your business. McKinsey Quarterly, 1(97-108), 1.
  • Demir, Y., & Ayhan, B. (2020). Sosyal medyanın gündem belirleyicileri: Twitter’da gündem belirleme süreci üzerine bir sosyal ağ analizi. İletişim Kuram ve Araştırma Dergisi, (51), 1-19.
  • Freelon, D. (2014). On the interpretation of digital trace data in communication and social computing research. Journal of Broadcasting & Electronic Media, 58(1), 59-75.
  • Gignac, G. E. & Szodorai, E. T. (2024). Defining intelligence: Bridging the gap between human and artificial perspectives. Intelligence, 104, 101832.
  • Golbeck, J. (2015). Introduction to Social Media Investigation: A Hands-on Approach. Amstredam: Syngress.
  • Guzmán, E. M., Zhang, Z. & Ahmed, W. (2021). Towards understanding a football club’s social media network: an exploratory case study of Manchester United. Information Discovery and Delivery, 49(1), 71-83.
  • Gündüz Hoşgör, D., Güngördü, H., & Hoşgör, H. (2023). Sağlık profesyonellerinin yapay zekâya ilişkin görüşleri: Metaforik bir araştırma. Al Farabi Uluslararası Sosyal Bilimler Dergisi, 8(1), 71-87.
  • Hansen, D., Shneiderman, B. & Smith, M. A. (2020). Analyzing social media networks with NodeXL: Insights from a connected world. Massachusetts: Morgan Kaufmann.
  • Hepp, A., Breiter, A. & Friemel, T. N. (2018). Digital traces in context| digital traces in context—an ıntroduction. International Journal of Communication, 12, 11.
  • Himelboim, I., Smith, M. A., Rainie, L., Shneiderman, B. & Espina, C. (2017). Classifying Twitter topic-networks using social network analysis. Social media+ society, 3(1), 1-13.
  • Kelly, S., Kaye, S. A. & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925.
  • Madden, M., Fox, S., Smith, A., & Vitak, J. (2007, 16 Aralık). Digital footprints. Pew research center. Erişim adresi (24 Mayıs 2024): https://www.pewresearch.org/internet/2007/12/16/digital-footprints/
  • Mohanna, S., & Basiouni, A. (2024). Consumer’s cognitive and affective perceptions of artificial intelligence (AI) in social media: Topic modelling approach. J. Electrical Systems, 20(3), 1317-1326.
  • Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1), 8–30. https://doi.org/10.1109/JRPROC.1961.287775
  • Ofosu-Ampong, K. (2024). Artificial intelligence research: A review on dominant themes, methods, frameworks and future research directions. Telematics and Informatics Reports, 100127.
  • Ruppert, E., Law, J. & Savage, M. (2013). Reassembling social science methods: The challenge of digital devices. Theory, culture & society, 30(4), 22-46.
  • Settanni, M., Azucar, D. & Marengo, D. (2018). Predicting individual characteristics from digital traces on social media: A meta-analysis. Cyberpsychology, Behavior, and Social Networking, 21(4), 217-228.
  • Smith, M. A. (2014). Identifying and shifting social media network patterns with NodeXL. International Conference on Collaboration Technologies and Systems (CTS). 3-8. IEEE. Stephen, A. T. (2016). The role of digital and social media marketing in consumer behavior. Current opinión in Psychology, 10, 17-21.
  • Stracqualursi, L., & Agati, P. (2024). Twitter users perceptions of ai-based e-learning technologies. Scientific Reports, 14(1), 5927.
  • Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37.
  • Wasserman, S. & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.

Dijital izlerde #yapayzekâ: Yapay zekâ algılarının ağ analizi

Yıl 2024, Sayı: 13, 19 - 34, 30.06.2024

Öz

Yapay zekâ insanın bilişsel süreçlerini ve davranışlarını tahmin edip bunları bilgisayar sistemlerine entegre eden bir teknolojidir. Yapay zekâ teknolojisi günümüz dünyasında yoğun bir şekilde kullanılan, birçok disiplinde etkilerini gözlemleyebildiğimiz popüler bir alandır. Ayrıca gündelik yaşam dinamiklerinde hızlı ve kolay çözümler sunabilen yapay zekânın, dijital dünyada ilgi gördüğü ve gün geçtikçe birey yaşamında nüfuzunu daha da artıracağı düşünülmektedir. Bu noktadan hareketle çalışmada çevrimiçi ortamlarda yer alan kullanıcıların X platformuna bırakmış oldukları #yapayzekâ dijital izlerindeki algıları, kavrama yükledikleri anlam, izlerin hangi temalar etrafında yoğunlaştığı sosyal ağ analizi yöntemiyle incelenmiştir. Ayrıca, çevrimiçi bir platform olan X’te, kullanıcıların #yapayzekâ dijital izlerinde oluşan algılarına ilişkin unsurlar, ağın yapısı ve ağda meydana gelen gruplar görselleştirilerek verilmiştir. Araştırmanın amacı doğrultusunda elde edilen veri setinde ilk olarak en çok kullanılan hashtagler saptanmış ve kullanıcı algıları ortaya koyulmaya çalışılmıştır. Konuyla ilgili en çok repost edilen paylaşımlar belirlenerek, tekrar paylaşımı yapılan gönderilerde vurgulanan temalar verilmiş ve kavrama ilişkin algılar ortaya koyulmuştur. X’te kullanıcıların #yapayzekâ etiketiyle yapmış oldukları paylaşımlarda öne çıkan unsurları öğrenmek amacıyla da en sık kullanılan kelimeler keşfedilmiş ve algıların ne olduğu belirlenmeye çalışılmıştır. Araştırmanın amacı doğrultusunda gerçekleşen diğer analizler bulgular kısmında detaylı olarak verilmiştir. Bulguların hemen ardından, sonuç kısmında #yapayzekâ etiketine ilişkin ağ analizi ile elde edilen kullanıcı algılarına ilişkin önemli içgörüler aktarılmıştır.

Kaynakça

  • Airoldi, M. (2018). Ethnography and the digital fields of social media. International Journal of Social Research Methodology, 21(6), 661-673.
  • Berente, N., Gu, B., Recker, J. & Santhanam, R. (2021). Managing artificial ıntelligence. MIS Quarterly, 45(3), 1433-1450.
  • Bollier, D. & Firestone, C. M. (2010). The promise and peril of big data. Washington, DC: Aspen Institute, Communications and Society Program.
  • Caliandro, A. & Gandini, A. (2016). Qualitative research in digital environments: A research toolkit. New York: Routledge.
  • Caner, S. & Bhatti, F. (2020). A conceptual framework on defining businesses strategy for artificial intelligence. Contemporary Management Research, 16(3), 175-206.
  • Chadwick, S., Fenton, A., Dron, R. & Ahmed, W. (2021). Social media conversations about high engagement sports team brands. IIM Kozhikode Society & Management Review, 10(2), 178-191.
  • Chollet, F. (2019). On the measure of intelligence. arXiv preprint arXiv:1911.01547.
  • Chui, M., Manyika, J., & Miremadi, M. (2018). What AI can and can’t do (yet) for your business. McKinsey Quarterly, 1(97-108), 1.
  • Demir, Y., & Ayhan, B. (2020). Sosyal medyanın gündem belirleyicileri: Twitter’da gündem belirleme süreci üzerine bir sosyal ağ analizi. İletişim Kuram ve Araştırma Dergisi, (51), 1-19.
  • Freelon, D. (2014). On the interpretation of digital trace data in communication and social computing research. Journal of Broadcasting & Electronic Media, 58(1), 59-75.
  • Gignac, G. E. & Szodorai, E. T. (2024). Defining intelligence: Bridging the gap between human and artificial perspectives. Intelligence, 104, 101832.
  • Golbeck, J. (2015). Introduction to Social Media Investigation: A Hands-on Approach. Amstredam: Syngress.
  • Guzmán, E. M., Zhang, Z. & Ahmed, W. (2021). Towards understanding a football club’s social media network: an exploratory case study of Manchester United. Information Discovery and Delivery, 49(1), 71-83.
  • Gündüz Hoşgör, D., Güngördü, H., & Hoşgör, H. (2023). Sağlık profesyonellerinin yapay zekâya ilişkin görüşleri: Metaforik bir araştırma. Al Farabi Uluslararası Sosyal Bilimler Dergisi, 8(1), 71-87.
  • Hansen, D., Shneiderman, B. & Smith, M. A. (2020). Analyzing social media networks with NodeXL: Insights from a connected world. Massachusetts: Morgan Kaufmann.
  • Hepp, A., Breiter, A. & Friemel, T. N. (2018). Digital traces in context| digital traces in context—an ıntroduction. International Journal of Communication, 12, 11.
  • Himelboim, I., Smith, M. A., Rainie, L., Shneiderman, B. & Espina, C. (2017). Classifying Twitter topic-networks using social network analysis. Social media+ society, 3(1), 1-13.
  • Kelly, S., Kaye, S. A. & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925.
  • Madden, M., Fox, S., Smith, A., & Vitak, J. (2007, 16 Aralık). Digital footprints. Pew research center. Erişim adresi (24 Mayıs 2024): https://www.pewresearch.org/internet/2007/12/16/digital-footprints/
  • Mohanna, S., & Basiouni, A. (2024). Consumer’s cognitive and affective perceptions of artificial intelligence (AI) in social media: Topic modelling approach. J. Electrical Systems, 20(3), 1317-1326.
  • Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1), 8–30. https://doi.org/10.1109/JRPROC.1961.287775
  • Ofosu-Ampong, K. (2024). Artificial intelligence research: A review on dominant themes, methods, frameworks and future research directions. Telematics and Informatics Reports, 100127.
  • Ruppert, E., Law, J. & Savage, M. (2013). Reassembling social science methods: The challenge of digital devices. Theory, culture & society, 30(4), 22-46.
  • Settanni, M., Azucar, D. & Marengo, D. (2018). Predicting individual characteristics from digital traces on social media: A meta-analysis. Cyberpsychology, Behavior, and Social Networking, 21(4), 217-228.
  • Smith, M. A. (2014). Identifying and shifting social media network patterns with NodeXL. International Conference on Collaboration Technologies and Systems (CTS). 3-8. IEEE. Stephen, A. T. (2016). The role of digital and social media marketing in consumer behavior. Current opinión in Psychology, 10, 17-21.
  • Stracqualursi, L., & Agati, P. (2024). Twitter users perceptions of ai-based e-learning technologies. Scientific Reports, 14(1), 5927.
  • Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37.
  • Wasserman, S. & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sosyal Medya Çalışmaları, Yeni Medya
Bölüm Araştırma Makaleleri
Yazarlar

Cevat Sercan Özer 0000-0003-1974-4539

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 28 Mayıs 2024
Kabul Tarihi 27 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 13

Kaynak Göster

APA Özer, C. S. (2024). Dijital izlerde #yapayzekâ: Yapay zekâ algılarının ağ analizi. NOSYON: Uluslararası Toplum Ve Kültür Çalışmaları Dergisi(13), 19-34.

19848   19580  19581 2070320899259912602531874