Araştırma Makalesi
BibTex RIS Kaynak Göster

HTC@PbS Süperkapasitör Elektrot Yapıların Performansları

Yıl 2025, Cilt: 6 Sayı: 1, 35 - 42, 30.06.2025

Öz

Çevre ve ekonomi üzerindeki olumsuz etkileri en aza indirmek ve enerji tüketimini azaltmak amacıyla, gelişmiş, düşük maliyetli ve sürdürülebilir enerji depolama cihazları geliştirmek büyük önem taşımaktadır. Günümüzde süperkapasitörler ve şarj edilebilir bataryalar, iki ana umut vadeden enerji depolama çözümü olarak öne çıkmaktadır. Yüksek performanslı elektrokimyasal enerji depolama sistemleri üretmenin anahtarı, elektrokimyasal olarak aktif malzemelerdir. Elektrokimyasal performanslarını artırmak
amacıyla, geniş spesifik yüzey alanına ve kontrol edilebilir gözenek boyutlarına sahip gözenekli yapılar tasarlamak gerekmektedir. Bu çalışmada, hidrotermal karbon (HTC) katkılı kurşun sülfür (HTC@PbS) ince film süperkapasitör elektrot yapıları, sprey yöntemiyle 100 °C'deki cam taban malzemeleri üzerine, sprey sayısına bağlı olarak üretilmiştir. Yüzey morfolojileri, bileşim analizleri ve kristal yapıları sırasıyla FESEM, EDX ve XRD ile karakterize edilmiştir. 2 puf ve 3 puf HTC@PbS ince film süperkapasitör elektrot yapılarının spesifik kapasitans (Cs) değerleri, Keithley 2400 sourcemeter ve 2100/220 Keithley multimetre kullanılarak, düzlemsel zamana bağlı I-V yöntemi ile -1,4 V ile +0,2 V potansiyel aralığında, 5 mV/s, 10 mV/s, 25 mV/s, 50 mV/s ve 100 mV/s tarama hızlarında ölçülmüştür. 2 puf ve 3 puf HTC@PbS ince film süperkapasitör elektrot yapılarında kaplanan aktif kütle miktarları sırasıyla 0,0566 g ve 0,0185 g olarak belirlenmiştir. 2 puf ve 3 puf sprey için 5 mV/s tarama hızında elde edilen spesifik kapasitans değerlerinin 873 F/g ve 919 F/g olarak en yüksek değerlere sahip olduğu görülmektedir.

Destekleyen Kurum

KARABÜK ÜNİVERSİTESİ BAP KOORDİNATÖRLÜĞÜ

Proje Numarası

KBÜBAP-25-YL-020

Teşekkür

Bu çalışma, Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından KBÜBAP-25-YL-020 proje kodu ile desteklenmiştir. Yazarlar, finansal destekleri için KBÜ-BAP birimine teşekkür ederler. Ayrıca, deneysel çalışmalarda kullanılan ekipmanlar için Karabük Üniversitesi Demir ve Çelik Enstitüsü'ne teşekkür ederiz.

Kaynakça

  • [1] Pandey, V. K., Verma, S., & Verma, B. (2022). Polyaniline/activated carbon/copper ferrite (PANI/AC/CuF) based ternary composite as an efficient electrode material for supercapacitor. Chemical Physics Letters, 802, 139780.
  • [2] Pandey, V. K., Verma, S., Das, T., & Verma, B. (2022). Supercapacitive behavior of polyaniline-waste derived carbon-copper cobaltite based ternary composite. Bioresource Technology Reports, 20, 101255.
  • [3] Islam, M. A., Asif, M., & Hameed, B. H. (2015). Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresource technology, 179, 227-233.
  • [4] Nawaz, A., & Kumar, P. (2023). Impact of temperature severity on hydrothermal carbonization: fuel properties, kinetic and thermodynamic parameters. Fuel, 336, 127166.
  • [5] Maiti, U. N., Lee, W. J., Lee, J. M., Oh, Y., Kim, J. Y., Kim, J. E., ... & Kim, S. O. (2014). 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Advanced Materials, 26(1), 40-67.
  • [6] Stein, A., Wang, Z., & Fierke, M. A. (2009). Functionalization of porous carbon materials with designed pore architecture. Advanced Materials, 21(3), 265-293.
  • [7] Li, Z., & Dai, S. (2005). Surface functionalization and pore size manipulation for carbons of ordered structure. Chemistry of materials, 17(7), 1717-1721.
  • [8] Chuenchom, L., Kraehnert, R., & Smarsly, B. M. (2012). Recent progress in soft-templating of porous carbon materials. Soft Matter, 8(42), 10801-10812.
  • [9] Shen, W., & Fan, W. (2013). Nitrogen-containing porous carbons: synthesis and application. Journal of Materials Chemistry A, 1(4), 999-1013.
  • [10] Paraknowitsch, J. P., & Thomas, A. (2017). Functional carbon materials from ionic liquid precursors. Chemical Synthesis and Applications of Graphene and Carbon Materials, 21-42.
  • [11] Kiciński, W., Szala, M., & Bystrzejewski, M. (2014). Sulfur-doped porous carbons: Synthesis and applications. Carbon, 68, 1-32.
  • [12] Ni, Y., Liu, H., Wang, F., Liang, Y., Hong, J., Ma, X., & Xu, Z. (2004). PbS crystals with clover‐like structure: Preparation, characterization, optical properties and influencing factors. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 39(3), 200-206.
  • [13] Peterson, J. J., & Krauss, T. D. (2006). Fluorescence spectroscopy of single lead sulfide quantum dots. Nano letters, 6(3), 510-514.
  • [14] Chandekar, K. V., Alkallas, F. H., Trabelsi, A. B. G., Shkir, M., Hakami, J., Khan, A., ... & AlFaify, S. (2022). Improved linear and nonlinear optical properties of PbS thin films synthesized by spray pyrolysis technique for optoelectronics: An effect of Gd3+ doping concentrations. Physica B: Condensed Matter, 641, 414099.
  • [15] Hone, F. G., Dejene, F. B., & Echendu, O. K. (2018). Band gap tailoring of chemically synthesized lead sulfide thin films by in situ Sn doping. Surface and Interface Analysis, 50(6), 648-656.
  • [16] Zhou, S. M., Feng, Y. S., & Zhang, L. D. (2003). Sonochemical synthesis of large-scale single-crystal PbS nanorods. Journal of materials research, 18(5), 1188-1191.
  • [17] Machol, J. L., Wise, F. W., Patel, R. C., & Tanner, D. B. (1993). Vibronic quantum beats in PbS microcrystallites. Physical Review B, 48(4), 2819.
  • [18] Moss, T. S. (2007). Lead salt photoconductors. Proceedings of the IRE, 43(12), 1869-1881.
  • [19] Kane, R. S., Cohen, R. E., & Silbey, R. (1996). Theoretical study of the electronic structure of PbS nanoclusters. The Journal of Physical Chemistry, 100(19), 7928-7932.
  • [20] Teh, S. J., Hamid, S. B. A., Lai, C. W., & Lim, Y. S. (2015). ZnCl2/NaCl-catalysed hydrothermal carbonization of glucose and oil palm shell fiber. Nanoscience and Nanotechnology Letters, 7(7), 611-615.
  • [21] Tezel, N. S., Korkmaz, S., Meydaneri Tezel, F., Kariper, İ. A. (2021). Synthesis and Characterization of Sn3Sb2S6Thin Film Supercapacitor Electrodes: The Effect of Deposition Temperature. Academic Research & Reviews In Engineering, Chapter 4, pp.45-65, ISBN: 978-625-7721-50-9, Serüven Publishing, İzmir/Turkey.
  • [22] Tezel, N. S., Tezel, F. M., & Kariper, Ι. A. (2021). Effects of pH on the optical, structural and supercapacitive properties of BiTe thin films produced via CBD. Bulletin of Materials Science, 44(2), 150.
  • [23] Kariper, İ. A., & Tezel, F. M. (2019). UV region supercapacitor: Bi-doped natural MgO rock salt thin film. Ceramics international, 45(7), 9219-9224.
  • [24] Kanaka Durga, I., Srinivasa Rao, S., Ahn, J. W., Park, T. Y., Jin-Soo, B., Ho, C. I., ... & Kim, H. J. (2018). Dice-like nanostructure of a CuS@ PbS composite for high-performance supercapacitor electrode applications. Energies, 11(7), 1624.
  • [25] Kashif, M., Khan, S., Wajahat, H., Alharbi, F. F., Al-Sehemi, A. G., Eman, S., & Alqurashi, H. (2024). Physicochemical and electrochemical investigation of lead sulphide-graphene oxide hybrid nanostructure for energy storage applications. Journal of Electroanalytical Chemistry, 974, 118680.

Performances of HTC@PbS Supercapacitor Electrode Structures

Yıl 2025, Cilt: 6 Sayı: 1, 35 - 42, 30.06.2025

Öz

To mitigate adverse environmental and economic impacts and to reduce energy consumption, the development of innovative, affordable, and sustainable energy storage systems is crucial. Currently, rechargeable batteries and supercapacitors are recognized as the two leading energy storage solutions. The production of high-performance electrochemical energy storage systems relies heavily on electrochemically active materials. To enhance their electrochemical capabilities, it is essential to create porous structures featuring a high specific surface area and adjustable pore dimensions. In this study, hydrothermal carbon (HTC) doped lead sulfide (HTC@PbS) thin film supercapacitor electrode structures were fabricated on glass substrates at 100 °C using the spray method, with their properties varying depending on the number of sprays. Surface morphologies, compositional analyses, and crystal structures were characterized by FESEM, EDX mapping, and XRD, respectively. The specific capacitance (Cs) values for the 2- and 3-spray HTC@PbS thin film supercapacitor electrode structures were measured using the in-plane time-dependent I-V method, employing
a Keithley 2400 sourcemeter and a Keithley 2100/220 multimeter. Measurements were conducted in the potential range of -1.4 V to +0.2 V at scan rates of 5 mV/s, 10 mV/s, 25 mV/s, 50 mV/s, and 100 mV/s. For the 2- and 3-spray HTC@PbS thin film supercapacitor electrode structures, the amount of active mass coated was determined to be 0.0566 g and 0.0185 g, respectively. The specific capacitance values for the 2- and 3-spray samples, measured at a 5 mV/s scan rate, showed the highest values of 873 F/g and 919 F/g.

Destekleyen Kurum

KARABÜK ÜNİVERSİTESİ BAP KOORDİNATÖRLÜĞÜ

Proje Numarası

KBÜBAP-25-YL-020

Teşekkür

This study was supported by Karabük University Scientific Research Projects Coordination with the project code KBÜBAP-25-YL-020. The authors would like to thank the KBÜ-BAP unit for their financial support. We would also like to thank Karabük University Iron and Steel Institute for the equipment used during the experimental studies.

Kaynakça

  • [1] Pandey, V. K., Verma, S., & Verma, B. (2022). Polyaniline/activated carbon/copper ferrite (PANI/AC/CuF) based ternary composite as an efficient electrode material for supercapacitor. Chemical Physics Letters, 802, 139780.
  • [2] Pandey, V. K., Verma, S., Das, T., & Verma, B. (2022). Supercapacitive behavior of polyaniline-waste derived carbon-copper cobaltite based ternary composite. Bioresource Technology Reports, 20, 101255.
  • [3] Islam, M. A., Asif, M., & Hameed, B. H. (2015). Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresource technology, 179, 227-233.
  • [4] Nawaz, A., & Kumar, P. (2023). Impact of temperature severity on hydrothermal carbonization: fuel properties, kinetic and thermodynamic parameters. Fuel, 336, 127166.
  • [5] Maiti, U. N., Lee, W. J., Lee, J. M., Oh, Y., Kim, J. Y., Kim, J. E., ... & Kim, S. O. (2014). 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Advanced Materials, 26(1), 40-67.
  • [6] Stein, A., Wang, Z., & Fierke, M. A. (2009). Functionalization of porous carbon materials with designed pore architecture. Advanced Materials, 21(3), 265-293.
  • [7] Li, Z., & Dai, S. (2005). Surface functionalization and pore size manipulation for carbons of ordered structure. Chemistry of materials, 17(7), 1717-1721.
  • [8] Chuenchom, L., Kraehnert, R., & Smarsly, B. M. (2012). Recent progress in soft-templating of porous carbon materials. Soft Matter, 8(42), 10801-10812.
  • [9] Shen, W., & Fan, W. (2013). Nitrogen-containing porous carbons: synthesis and application. Journal of Materials Chemistry A, 1(4), 999-1013.
  • [10] Paraknowitsch, J. P., & Thomas, A. (2017). Functional carbon materials from ionic liquid precursors. Chemical Synthesis and Applications of Graphene and Carbon Materials, 21-42.
  • [11] Kiciński, W., Szala, M., & Bystrzejewski, M. (2014). Sulfur-doped porous carbons: Synthesis and applications. Carbon, 68, 1-32.
  • [12] Ni, Y., Liu, H., Wang, F., Liang, Y., Hong, J., Ma, X., & Xu, Z. (2004). PbS crystals with clover‐like structure: Preparation, characterization, optical properties and influencing factors. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 39(3), 200-206.
  • [13] Peterson, J. J., & Krauss, T. D. (2006). Fluorescence spectroscopy of single lead sulfide quantum dots. Nano letters, 6(3), 510-514.
  • [14] Chandekar, K. V., Alkallas, F. H., Trabelsi, A. B. G., Shkir, M., Hakami, J., Khan, A., ... & AlFaify, S. (2022). Improved linear and nonlinear optical properties of PbS thin films synthesized by spray pyrolysis technique for optoelectronics: An effect of Gd3+ doping concentrations. Physica B: Condensed Matter, 641, 414099.
  • [15] Hone, F. G., Dejene, F. B., & Echendu, O. K. (2018). Band gap tailoring of chemically synthesized lead sulfide thin films by in situ Sn doping. Surface and Interface Analysis, 50(6), 648-656.
  • [16] Zhou, S. M., Feng, Y. S., & Zhang, L. D. (2003). Sonochemical synthesis of large-scale single-crystal PbS nanorods. Journal of materials research, 18(5), 1188-1191.
  • [17] Machol, J. L., Wise, F. W., Patel, R. C., & Tanner, D. B. (1993). Vibronic quantum beats in PbS microcrystallites. Physical Review B, 48(4), 2819.
  • [18] Moss, T. S. (2007). Lead salt photoconductors. Proceedings of the IRE, 43(12), 1869-1881.
  • [19] Kane, R. S., Cohen, R. E., & Silbey, R. (1996). Theoretical study of the electronic structure of PbS nanoclusters. The Journal of Physical Chemistry, 100(19), 7928-7932.
  • [20] Teh, S. J., Hamid, S. B. A., Lai, C. W., & Lim, Y. S. (2015). ZnCl2/NaCl-catalysed hydrothermal carbonization of glucose and oil palm shell fiber. Nanoscience and Nanotechnology Letters, 7(7), 611-615.
  • [21] Tezel, N. S., Korkmaz, S., Meydaneri Tezel, F., Kariper, İ. A. (2021). Synthesis and Characterization of Sn3Sb2S6Thin Film Supercapacitor Electrodes: The Effect of Deposition Temperature. Academic Research & Reviews In Engineering, Chapter 4, pp.45-65, ISBN: 978-625-7721-50-9, Serüven Publishing, İzmir/Turkey.
  • [22] Tezel, N. S., Tezel, F. M., & Kariper, Ι. A. (2021). Effects of pH on the optical, structural and supercapacitive properties of BiTe thin films produced via CBD. Bulletin of Materials Science, 44(2), 150.
  • [23] Kariper, İ. A., & Tezel, F. M. (2019). UV region supercapacitor: Bi-doped natural MgO rock salt thin film. Ceramics international, 45(7), 9219-9224.
  • [24] Kanaka Durga, I., Srinivasa Rao, S., Ahn, J. W., Park, T. Y., Jin-Soo, B., Ho, C. I., ... & Kim, H. J. (2018). Dice-like nanostructure of a CuS@ PbS composite for high-performance supercapacitor electrode applications. Energies, 11(7), 1624.
  • [25] Kashif, M., Khan, S., Wajahat, H., Alharbi, F. F., Al-Sehemi, A. G., Eman, S., & Alqurashi, H. (2024). Physicochemical and electrochemical investigation of lead sulphide-graphene oxide hybrid nanostructure for energy storage applications. Journal of Electroanalytical Chemistry, 974, 118680.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fonksiyonel Malzemeler, Kompozit ve Hibrit Malzemeler, Malzeme Karekterizasyonu
Bölüm Araştırma Makalesi
Yazarlar

Fatımah Talal Munshid Munshid Bu kişi benim 0009-0004-4439-466X

Fatma Meydaneri Tezel 0000-0003-1546-875X

Proje Numarası KBÜBAP-25-YL-020
Erken Görünüm Tarihi 1 Temmuz 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 27 Mayıs 2025
Kabul Tarihi 11 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Munshid, F. T. M., & Meydaneri Tezel, F. (2025). Performances of HTC@PbS Supercapacitor Electrode Structures. DCE Doğa Bilimleri Dergisi, 6(1), 35-42.

DÇE Doğa Bilimleri Dergisi, Karabük Üniversitesi Demir Çelik Enstitüsü tarafından yayımlanan uluslararası hakemli ve ücretsiz bir dergidir. Dergimiz, doğa bilimleri alanında özgün araştırmaların paylaşılmasını teşvik eder ve bilimsel gelişmeleri uluslararası bilim camiasıyla buluşturur.

Tüm hakları saklıdır © 2025 DÇE Doğa Bilimleri Dergisi.

Promoting innovative research and contributing to scientific progress in Natural Sciences.