Araştırma Makalesi
BibTex RIS Kaynak Göster

Soft representation of soft groups

Yıl 2016, Cilt: 4 Sayı: 2, 23 - 29, 01.03.2016
https://izlik.org/JA24AE68SL

Öz

In this paper, we introduce the notion of soft representation of a soft group and obtain basic properties of soft representation of soft groups using the definition of soft sets and soft group. Also we study the relationship between soft representation of soft groups and soft G-Modules. Moreover we examine irreducibility, reducibility and complete reducibility of soft representations.

Kaynakça

  • D. Molodtsov,”Soft set theory—first results.” Computers & Mathematics with Applications 37.4 (1999): 19-31.
  • P. K. Maji, R. Biswas and A.R. Roy, ”Soft set theory.” Computers & Mathematics with Applications 45.4 (2003): 555-562.
  • H. Aktas¸ and N. C¸ a˘gman, ”Soft sets and soft groups.” Information Sciences 177.13 (2007): 2726-2735.
  • J. B. Young “Soft BCK/BCI-algebras.” Computers & Mathematics with Applications 56.5 (2008): 1408-1413.
  • F. Feng, Y. B. Jun, and X. Zhao. ”Soft semirings.”Computers & Mathematics with Applications 56.10 (2008): 2621-2628.
  • SUN, Qiu-Mei; ZHANG, Zi-Long; LIU, Jing. Soft sets and soft modules. In: Rough Sets and Knowledge Technology. Springer Berlin Heidelberg, 2008. p.403-409.
  • U. Acar, F. Koyuncu, and B. Tanay. ”Soft sets and soft rings. ”Computers & Mathematics with Applications,59 (11) (2010):3458-3463.
  • Aktas¸, Hacı. ”Some algebraic applications of soft sets.” Applied Soft Computing 28 (2015): 327-331.
  • Aktas¸, Hacı, and S¸ erif O¨ zlu¨. ”Cyclic Soft Groups and Their Applications on Groups.” The Scientific World Journal 2014 (2014).
  • Sezer, A. S., Atag¨un, A. O., &Cagman, N. (2015). Uni-soft Substructures of Rings and Modules. Information Sciences Letters,4(1),7.
  • Jun, Y. B., &Song, S. Z. (2015). Int -Soft (Generalized) Bi-Ideals of Semigroups. The Scientific World Journal,2015.
  • S¸ ahin, M. Olgun, N. Kargın, A. and Uluc¸ay, V. (2015). Soft G-module, ICSCCW-2015.
  • Q. Sun, Z. Zang, and J. Liu, Soft sets and soft modules, Lecture Notes in Computer, Sci, 5009 (2008) 403 – 409.
  • C. W. Curties, Representation theory of finite group and associative algebra. Inc, (1962).
  • S. Nazmul and S. K. Samanta, Soft Topological soft group, Mathematical Sciences, (2012) 6:66.

Yıl 2016, Cilt: 4 Sayı: 2, 23 - 29, 01.03.2016
https://izlik.org/JA24AE68SL

Öz

Kaynakça

  • D. Molodtsov,”Soft set theory—first results.” Computers & Mathematics with Applications 37.4 (1999): 19-31.
  • P. K. Maji, R. Biswas and A.R. Roy, ”Soft set theory.” Computers & Mathematics with Applications 45.4 (2003): 555-562.
  • H. Aktas¸ and N. C¸ a˘gman, ”Soft sets and soft groups.” Information Sciences 177.13 (2007): 2726-2735.
  • J. B. Young “Soft BCK/BCI-algebras.” Computers & Mathematics with Applications 56.5 (2008): 1408-1413.
  • F. Feng, Y. B. Jun, and X. Zhao. ”Soft semirings.”Computers & Mathematics with Applications 56.10 (2008): 2621-2628.
  • SUN, Qiu-Mei; ZHANG, Zi-Long; LIU, Jing. Soft sets and soft modules. In: Rough Sets and Knowledge Technology. Springer Berlin Heidelberg, 2008. p.403-409.
  • U. Acar, F. Koyuncu, and B. Tanay. ”Soft sets and soft rings. ”Computers & Mathematics with Applications,59 (11) (2010):3458-3463.
  • Aktas¸, Hacı. ”Some algebraic applications of soft sets.” Applied Soft Computing 28 (2015): 327-331.
  • Aktas¸, Hacı, and S¸ erif O¨ zlu¨. ”Cyclic Soft Groups and Their Applications on Groups.” The Scientific World Journal 2014 (2014).
  • Sezer, A. S., Atag¨un, A. O., &Cagman, N. (2015). Uni-soft Substructures of Rings and Modules. Information Sciences Letters,4(1),7.
  • Jun, Y. B., &Song, S. Z. (2015). Int -Soft (Generalized) Bi-Ideals of Semigroups. The Scientific World Journal,2015.
  • S¸ ahin, M. Olgun, N. Kargın, A. and Uluc¸ay, V. (2015). Soft G-module, ICSCCW-2015.
  • Q. Sun, Z. Zang, and J. Liu, Soft sets and soft modules, Lecture Notes in Computer, Sci, 5009 (2008) 403 – 409.
  • C. W. Curties, Representation theory of finite group and associative algebra. Inc, (1962).
  • S. Nazmul and S. K. Samanta, Soft Topological soft group, Mathematical Sciences, (2012) 6:66.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Vakkas Ulucay

Yayımlanma Tarihi 1 Mart 2016
IZ https://izlik.org/JA24AE68SL
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Ulucay, V. (2016). Soft representation of soft groups. New Trends in Mathematical Sciences, 4(2), 23-29. https://izlik.org/JA24AE68SL
AMA 1.Ulucay V. Soft representation of soft groups. New Trends in Mathematical Sciences. 2016;4(2):23-29. https://izlik.org/JA24AE68SL
Chicago Ulucay, Vakkas. 2016. “Soft representation of soft groups”. New Trends in Mathematical Sciences 4 (2): 23-29. https://izlik.org/JA24AE68SL.
EndNote Ulucay V (01 Mart 2016) Soft representation of soft groups. New Trends in Mathematical Sciences 4 2 23–29.
IEEE [1]V. Ulucay, “Soft representation of soft groups”, New Trends in Mathematical Sciences, c. 4, sy 2, ss. 23–29, Mar. 2016, [çevrimiçi]. Erişim adresi: https://izlik.org/JA24AE68SL
ISNAD Ulucay, Vakkas. “Soft representation of soft groups”. New Trends in Mathematical Sciences 4/2 (01 Mart 2016): 23-29. https://izlik.org/JA24AE68SL.
JAMA 1.Ulucay V. Soft representation of soft groups. New Trends in Mathematical Sciences. 2016;4:23–29.
MLA Ulucay, Vakkas. “Soft representation of soft groups”. New Trends in Mathematical Sciences, c. 4, sy 2, Mart 2016, ss. 23-29, https://izlik.org/JA24AE68SL.
Vancouver 1.Ulucay V. Soft representation of soft groups. New Trends in Mathematical Sciences [Internet]. 01 Mart 2016;4(2):23-9. Erişim adresi: https://izlik.org/JA24AE68SL