Araştırma Makalesi
BibTex RIS Kaynak Göster

On defining soft spaces by weak soft neighborhood systems

Yıl 2016, Cilt: 4 Sayı: 2, 113 - 124, 01.03.2016
https://izlik.org/JA44DH78MA

Öz

In the present paper, we define the concepts of weak soft neighborhood space, soft $w^{s}( \widetilde{\varphi },\widetilde{\varphi }^{^{\prime
}}) -continuous$, soft $w^{s}-continuous$ and soft $w^{s^{\ast }}-continuous$ on weak soft neighborhood spaces. Finally, we introduce their
basic properties and some examples.

Kaynakça

  • Aktaş H. and Cağman N., Soft sets and soft group, Information Science 177 (2007) 2726-2735. Bayramov S., Gunduz (Aras) C. and Demirci N., A new approach to inverse and direct systems of soft topological spaces, Maejo International Journal of Science and Technology, 10(01) (2016) 51-65.
  • Bayramov S. and Gunduz (Aras) C., Soft locally compact spaces and soft paracompact spaces, Journal of Mathematics and System Science, 3 (2013) 122-130.
  • Csaszar A., Generalized topology, generalized continuity, Acta. Math. Hungar. 96 (2002) 351-357.
  • Cağman N., Karatao S. and Enginoğlu S., Soft topology, Comput. Math. Appl. (2011) 351-358.
  • Gunduz A. C., Sonmez A. and C¸ akallı H., On soft Mappings, (to appear).
  • Maji P. K., Bismas R. and Roy A. R., Soft Set Theory, Comput. Math. Appl. 45 (2003) 555-562.
  • Min W. K., On weak neighborhood systems and spaces, Acta. Math. Hungar. 121 (3) (2008) 283-292.
  • Molodtsov D., Soft Set Theory-First Results, Comput. Math. Appl.37 (1999) 19-31.
  • Ozturk T. Y. and Bayramov S., Soft mapping spaces, The Scientific World Journal, Article ID 307292, (2014) 8p.
  • Shabir M. and Naz M., On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786-1799.
  • Shabir M. and Bashir A., Some properties of soft topological spaces, Comput. Math. Appl. 62 (2011) 4058-4067.
  • Sahin R. and Küçük A., Soft Filters and Their Convergence Properties, Annals of Fuzzy Mathematics and Informatics 6(3) (2013) 529-543.
  • Sahin R., Soft compactification of soft topological spaces: Soft star topological spaces, Annals of Fuzzy Mathematics and Informatics 10(2) (2015) 447-464.
  • Thomas J. and John J. S., On soft generalized topological spaces, Journ. of New Results in Sci. 4 (2014) 01-15.

Yıl 2016, Cilt: 4 Sayı: 2, 113 - 124, 01.03.2016
https://izlik.org/JA44DH78MA

Öz

Kaynakça

  • Aktaş H. and Cağman N., Soft sets and soft group, Information Science 177 (2007) 2726-2735. Bayramov S., Gunduz (Aras) C. and Demirci N., A new approach to inverse and direct systems of soft topological spaces, Maejo International Journal of Science and Technology, 10(01) (2016) 51-65.
  • Bayramov S. and Gunduz (Aras) C., Soft locally compact spaces and soft paracompact spaces, Journal of Mathematics and System Science, 3 (2013) 122-130.
  • Csaszar A., Generalized topology, generalized continuity, Acta. Math. Hungar. 96 (2002) 351-357.
  • Cağman N., Karatao S. and Enginoğlu S., Soft topology, Comput. Math. Appl. (2011) 351-358.
  • Gunduz A. C., Sonmez A. and C¸ akallı H., On soft Mappings, (to appear).
  • Maji P. K., Bismas R. and Roy A. R., Soft Set Theory, Comput. Math. Appl. 45 (2003) 555-562.
  • Min W. K., On weak neighborhood systems and spaces, Acta. Math. Hungar. 121 (3) (2008) 283-292.
  • Molodtsov D., Soft Set Theory-First Results, Comput. Math. Appl.37 (1999) 19-31.
  • Ozturk T. Y. and Bayramov S., Soft mapping spaces, The Scientific World Journal, Article ID 307292, (2014) 8p.
  • Shabir M. and Naz M., On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786-1799.
  • Shabir M. and Bashir A., Some properties of soft topological spaces, Comput. Math. Appl. 62 (2011) 4058-4067.
  • Sahin R. and Küçük A., Soft Filters and Their Convergence Properties, Annals of Fuzzy Mathematics and Informatics 6(3) (2013) 529-543.
  • Sahin R., Soft compactification of soft topological spaces: Soft star topological spaces, Annals of Fuzzy Mathematics and Informatics 10(2) (2015) 447-464.
  • Thomas J. and John J. S., On soft generalized topological spaces, Journ. of New Results in Sci. 4 (2014) 01-15.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Taha Yasin Ozturk

Yayımlanma Tarihi 1 Mart 2016
IZ https://izlik.org/JA44DH78MA
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Ozturk, T. Y. (2016). On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences, 4(2), 113-124. https://izlik.org/JA44DH78MA
AMA 1.Ozturk TY. On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences. 2016;4(2):113-124. https://izlik.org/JA44DH78MA
Chicago Ozturk, Taha Yasin. 2016. “On defining soft spaces by weak soft neighborhood systems”. New Trends in Mathematical Sciences 4 (2): 113-24. https://izlik.org/JA44DH78MA.
EndNote Ozturk TY (01 Mart 2016) On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences 4 2 113–124.
IEEE [1]T. Y. Ozturk, “On defining soft spaces by weak soft neighborhood systems”, New Trends in Mathematical Sciences, c. 4, sy 2, ss. 113–124, Mar. 2016, [çevrimiçi]. Erişim adresi: https://izlik.org/JA44DH78MA
ISNAD Ozturk, Taha Yasin. “On defining soft spaces by weak soft neighborhood systems”. New Trends in Mathematical Sciences 4/2 (01 Mart 2016): 113-124. https://izlik.org/JA44DH78MA.
JAMA 1.Ozturk TY. On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences. 2016;4:113–124.
MLA Ozturk, Taha Yasin. “On defining soft spaces by weak soft neighborhood systems”. New Trends in Mathematical Sciences, c. 4, sy 2, Mart 2016, ss. 113-24, https://izlik.org/JA44DH78MA.
Vancouver 1.Ozturk TY. On defining soft spaces by weak soft neighborhood systems. New Trends in Mathematical Sciences [Internet]. 01 Mart 2016;4(2):113-24. Erişim adresi: https://izlik.org/JA44DH78MA