Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2016, Cilt: 4 Sayı: 3, 204 - 211, 30.09.2016
https://izlik.org/JA23HK49YN

Öz

Kaynakça

  • J.D. Murray, Mathematical Biology I: an Introduction, 3rd. edn., Interdisciplinary Applied Mathematics,17 405-406,(2002)
  • T. Hofer, Chemotaxis and aggregation in the cellular slime mould, Berlin, 137-150,(1999)
  • D. Horstman, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresberichte DMV. 105(3), 103-165,(2003)
  • D. Horstman, Lyapunov functions and L p-estimates for a class of reaction diffusion systems, Coll. Math. 87,113-127,(2001)
  • B. Perthame, Transport Equations in Biology, Birkhauser, (2007).
  • T. Hillen and K.J. Painter, A user’s guide to PDE models for chemotaxis. Journal of Mathematical Biology, 58,183-217,(2009)
  • E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26,399-415,(1970)
  • E.F. Keller and L.A. Segel, Model for chemotaxis, J. Theor. Biol. 30,225-234,(1971).
  • M. R. Myerscough, P. K. Maini, J.D. Murray and K. H. Winters, Two dimensional pattern formation in a Chemotaxis system, In dynamics of complex interconnected biological system, 65-83, (1990).

Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model

Yıl 2016, Cilt: 4 Sayı: 3, 204 - 211, 30.09.2016
https://izlik.org/JA23HK49YN

Öz



This paper seeks to establish the stability of the
birth-death process in relation to the Keller-Segel Model. As well, it attempts
to describe the stability of non-linear diffusion for chemotaxis. Attention
will be on mass criticality results applying to the chemotaxis model.
Afterwards, the analysis of the relative stability that stationary states
exhibit is undertaken using the Keller-Segel system for the chemotaxis having
linear diffusion. Standard linearization and separation of variables are the
techniques employed in the analysis. The stability or instability of the
analysed cases is demonstrated by the graphics. By using the critical results
obtained for the models, the graphics are then compared with the rest.




Kaynakça

  • J.D. Murray, Mathematical Biology I: an Introduction, 3rd. edn., Interdisciplinary Applied Mathematics,17 405-406,(2002)
  • T. Hofer, Chemotaxis and aggregation in the cellular slime mould, Berlin, 137-150,(1999)
  • D. Horstman, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresberichte DMV. 105(3), 103-165,(2003)
  • D. Horstman, Lyapunov functions and L p-estimates for a class of reaction diffusion systems, Coll. Math. 87,113-127,(2001)
  • B. Perthame, Transport Equations in Biology, Birkhauser, (2007).
  • T. Hillen and K.J. Painter, A user’s guide to PDE models for chemotaxis. Journal of Mathematical Biology, 58,183-217,(2009)
  • E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26,399-415,(1970)
  • E.F. Keller and L.A. Segel, Model for chemotaxis, J. Theor. Biol. 30,225-234,(1971).
  • M. R. Myerscough, P. K. Maini, J.D. Murray and K. H. Winters, Two dimensional pattern formation in a Chemotaxis system, In dynamics of complex interconnected biological system, 65-83, (1990).
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Ali Dokuyucu

Ercan Celik Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2016
IZ https://izlik.org/JA23HK49YN
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 3

Kaynak Göster

APA Dokuyucu, M. A., & Celik, E. (2016). Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model. New Trends in Mathematical Sciences, 4(3), 204-211. https://izlik.org/JA23HK49YN
AMA 1.Dokuyucu MA, Celik E. Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model. New Trends in Mathematical Sciences. 2016;4(3):204-211. https://izlik.org/JA23HK49YN
Chicago Dokuyucu, Mustafa Ali, ve Ercan Celik. 2016. “Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model”. New Trends in Mathematical Sciences 4 (3): 204-11. https://izlik.org/JA23HK49YN.
EndNote Dokuyucu MA, Celik E (01 Eylül 2016) Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model. New Trends in Mathematical Sciences 4 3 204–211.
IEEE [1]M. A. Dokuyucu ve E. Celik, “Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model”, New Trends in Mathematical Sciences, c. 4, sy 3, ss. 204–211, Eyl. 2016, [çevrimiçi]. Erişim adresi: https://izlik.org/JA23HK49YN
ISNAD Dokuyucu, Mustafa Ali - Celik, Ercan. “Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model”. New Trends in Mathematical Sciences 4/3 (01 Eylül 2016): 204-211. https://izlik.org/JA23HK49YN.
JAMA 1.Dokuyucu MA, Celik E. Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model. New Trends in Mathematical Sciences. 2016;4:204–211.
MLA Dokuyucu, Mustafa Ali, ve Ercan Celik. “Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model”. New Trends in Mathematical Sciences, c. 4, sy 3, Eylül 2016, ss. 204-11, https://izlik.org/JA23HK49YN.
Vancouver 1.Dokuyucu MA, Celik E. Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model. New Trends in Mathematical Sciences [Internet]. 01 Eylül 2016;4(3):204-11. Erişim adresi: https://izlik.org/JA23HK49YN