Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2017, Cilt: 5 Sayı: 1, 190 - 195, 01.01.2017
https://izlik.org/JA82ST86KF

Öz

Kaynakça

  • V. Bala'z ̆, J. C ̆erven'ansky', P. Kostyrko, T. S ̆ala't, I-convergence and I-continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematical 5, 43-50, 2002.
  • N. Bourbaki, General Topology, Part (I) (transl.), Addison- Wesley, Reading (1966).
  • K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.
  • H. Fast, sur la convergence statistique, colloq. Math. 2 (1951), 241-244.
  • H. Halberstem, K. F. Roth, Sequences, Springer, New York, 1993.
  • D. S. Jamwal, R. Jamwal, S. Sharma, I-convergence of filters, New Trends in Mathematical Sciences, 2016,(accepted).
  • P. Kostyrko, T.S ̆ala't, W. Wilczynski, I-convergence, Real Analysis, Exch. 26 (2) (2000/2001), 669-685.
  • P. Kostyrko, M. Mac ̆aj, T.S ̆ala't, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
  • B. K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
  • B. K. Lahiri, P. Das, I and I^*-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
  • B. K. Lahiri, P. Das, I and I^*-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
  • M. Mac ̆aj, T.S ̆ala't, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
  • M. Mursaleen and A. Alotaibi, On I–convergence in random 2–normed spaces, Math. Slovaca, 61(6) (2011) 933–940.
  • M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(62)(4) (2010) 359-371.
  • M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012) 49-62.
  • M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010) 603-611.
  • I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, 4th Ed., John Wiley, New York, 1980.
  • T.S ̆ala't, On statistically convergent sequences of real numbers, Mathematical Slovaca, 30 (1980), No. 2, 139-150.
  • T.S ̆ala't, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. of Pure Appl. Math. 17 (2005), 45-54.
  • A.Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(5) (2007), 1477-1484.
  • I. J. Schoenberg, The integrability of certain function and related summability methods, Am. Math. Mon. 66 (1959), 361-375.
  • S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.

Some more results on i-convergence of filters

Yıl 2017, Cilt: 5 Sayı: 1, 190 - 195, 01.01.2017
https://izlik.org/JA82ST86KF

Öz


Kaynakça

  • V. Bala'z ̆, J. C ̆erven'ansky', P. Kostyrko, T. S ̆ala't, I-convergence and I-continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematical 5, 43-50, 2002.
  • N. Bourbaki, General Topology, Part (I) (transl.), Addison- Wesley, Reading (1966).
  • K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.
  • H. Fast, sur la convergence statistique, colloq. Math. 2 (1951), 241-244.
  • H. Halberstem, K. F. Roth, Sequences, Springer, New York, 1993.
  • D. S. Jamwal, R. Jamwal, S. Sharma, I-convergence of filters, New Trends in Mathematical Sciences, 2016,(accepted).
  • P. Kostyrko, T.S ̆ala't, W. Wilczynski, I-convergence, Real Analysis, Exch. 26 (2) (2000/2001), 669-685.
  • P. Kostyrko, M. Mac ̆aj, T.S ̆ala't, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
  • B. K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
  • B. K. Lahiri, P. Das, I and I^*-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
  • B. K. Lahiri, P. Das, I and I^*-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
  • M. Mac ̆aj, T.S ̆ala't, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
  • M. Mursaleen and A. Alotaibi, On I–convergence in random 2–normed spaces, Math. Slovaca, 61(6) (2011) 933–940.
  • M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(62)(4) (2010) 359-371.
  • M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012) 49-62.
  • M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010) 603-611.
  • I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, 4th Ed., John Wiley, New York, 1980.
  • T.S ̆ala't, On statistically convergent sequences of real numbers, Mathematical Slovaca, 30 (1980), No. 2, 139-150.
  • T.S ̆ala't, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. of Pure Appl. Math. 17 (2005), 45-54.
  • A.Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(5) (2007), 1477-1484.
  • I. J. Schoenberg, The integrability of certain function and related summability methods, Am. Math. Mon. 66 (1959), 361-375.
  • S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Rohini Jamwal Bu kişi benim

Shivani Sharma Bu kişi benim

Dalip Singh Jamwal Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2017
IZ https://izlik.org/JA82ST86KF
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 1

Kaynak Göster

APA Jamwal, R., Sharma, S., & Jamwal, D. S. (2017). Some more results on i-convergence of filters. New Trends in Mathematical Sciences, 5(1), 190-195. https://izlik.org/JA82ST86KF
AMA 1.Jamwal R, Sharma S, Jamwal DS. Some more results on i-convergence of filters. New Trends in Mathematical Sciences. 2017;5(1):190-195. https://izlik.org/JA82ST86KF
Chicago Jamwal, Rohini, Shivani Sharma, ve Dalip Singh Jamwal. 2017. “Some more results on i-convergence of filters”. New Trends in Mathematical Sciences 5 (1): 190-95. https://izlik.org/JA82ST86KF.
EndNote Jamwal R, Sharma S, Jamwal DS (01 Ocak 2017) Some more results on i-convergence of filters. New Trends in Mathematical Sciences 5 1 190–195.
IEEE [1]R. Jamwal, S. Sharma, ve D. S. Jamwal, “Some more results on i-convergence of filters”, New Trends in Mathematical Sciences, c. 5, sy 1, ss. 190–195, Oca. 2017, [çevrimiçi]. Erişim adresi: https://izlik.org/JA82ST86KF
ISNAD Jamwal, Rohini - Sharma, Shivani - Jamwal, Dalip Singh. “Some more results on i-convergence of filters”. New Trends in Mathematical Sciences 5/1 (01 Ocak 2017): 190-195. https://izlik.org/JA82ST86KF.
JAMA 1.Jamwal R, Sharma S, Jamwal DS. Some more results on i-convergence of filters. New Trends in Mathematical Sciences. 2017;5:190–195.
MLA Jamwal, Rohini, vd. “Some more results on i-convergence of filters”. New Trends in Mathematical Sciences, c. 5, sy 1, Ocak 2017, ss. 190-5, https://izlik.org/JA82ST86KF.
Vancouver 1.Jamwal R, Sharma S, Jamwal DS. Some more results on i-convergence of filters. New Trends in Mathematical Sciences [Internet]. 01 Ocak 2017;5(1):190-5. Erişim adresi: https://izlik.org/JA82ST86KF