BibTex RIS Kaynak Göster

A Matrix Scheme Based on Fractional Finite Difference Method for Solving Fractional Delay Differential Equations with Boundary Values

Yıl 2015, Cilt: 3 Sayı: 2, 13 - 23, 19.01.2015

Öz

In this paper, the method of fractional finite difference presents and used for solving a number of famous fractional orderversion of scientific models. The proposed method besides being simple is so exact which is sensible in the solved problems

Kaynakça

  • Averina V., Kolmanovsky I., Gibson A., Song G., Bueler E. Analysis and control of delay-dependent behavior of engine air-to-fuel ratio. Proceedings of 2005 IEEE Conference on Control Applications (CCA 2005) 28, 1222–1227.
  • Bhalekar S. Dynamical analysis of fractional order Ucar prototype delayed system. vol. 6. Springer Verlag London Limited;(2012) 513–
  • Comte F. Operateurs fractionnaires en econometrie et en finance. Prepubl. MAP5. 2001.
  • Fall C.P., Marland E.S., Wagner J.M., Tyson J.J. Computational cell biology. New York: Springer-Verlag; 2002.
  • Feliu V., Rivas R., Castillo F. Fractional order controller robust to time delay for water distribution in an irrigation main canal pool. Comput Electron Agric 69(2), (2009) 185–97.
  • Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, in: N. – Holl. Math. Stud. vol. 204, Elsevier Sci. B. V, Amst. 2006.
  • Landry M., Campbell S., Morris K., Aguilar C. Dynamics of an inverted pendulum with delayed Control, SIAM J.Appl. Dyn. Syst. 4(2005), 333 - 351.
  • Magin R. l. Fractional calculus of complex dynamics in biological tissues, Comput. Math. Appl. 59(5) (2010) 1586 - 1593.
  • Moghaddam B. P., Mostaghim Z. S. A Numerical method based on finite difference for solving fractional delay differential equations, J. Taibah Univ. Sci. 7 (2013) 120-127.
  • Moghaddam B. P., Mostaghim Z. S. A Novel Matrix Approach to Fractional Finite Difference for solving Models Based on Nonlinear Fractional Delay Differential Equations, Ain Shams Engineering Journal 5 (2014), 585–594.
  • Murray JD. Mathematical biology I: an introduction, inter appl. mathematics, 3rd ed., vol. 17. Berlin: Springer; 2002.
  • Park H., Hong K. S. Boundary control of container cranes, Proc. SPIE, Vol. 6042, 604210 (2005).

D*y(t) = f (t, y (t) , y (t *τ) , D*y(t), Dαy(t

Yıl 2015, Cilt: 3 Sayı: 2, 13 - 23, 19.01.2015

Öz

Kaynakça

  • Averina V., Kolmanovsky I., Gibson A., Song G., Bueler E. Analysis and control of delay-dependent behavior of engine air-to-fuel ratio. Proceedings of 2005 IEEE Conference on Control Applications (CCA 2005) 28, 1222–1227.
  • Bhalekar S. Dynamical analysis of fractional order Ucar prototype delayed system. vol. 6. Springer Verlag London Limited;(2012) 513–
  • Comte F. Operateurs fractionnaires en econometrie et en finance. Prepubl. MAP5. 2001.
  • Fall C.P., Marland E.S., Wagner J.M., Tyson J.J. Computational cell biology. New York: Springer-Verlag; 2002.
  • Feliu V., Rivas R., Castillo F. Fractional order controller robust to time delay for water distribution in an irrigation main canal pool. Comput Electron Agric 69(2), (2009) 185–97.
  • Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, in: N. – Holl. Math. Stud. vol. 204, Elsevier Sci. B. V, Amst. 2006.
  • Landry M., Campbell S., Morris K., Aguilar C. Dynamics of an inverted pendulum with delayed Control, SIAM J.Appl. Dyn. Syst. 4(2005), 333 - 351.
  • Magin R. l. Fractional calculus of complex dynamics in biological tissues, Comput. Math. Appl. 59(5) (2010) 1586 - 1593.
  • Moghaddam B. P., Mostaghim Z. S. A Numerical method based on finite difference for solving fractional delay differential equations, J. Taibah Univ. Sci. 7 (2013) 120-127.
  • Moghaddam B. P., Mostaghim Z. S. A Novel Matrix Approach to Fractional Finite Difference for solving Models Based on Nonlinear Fractional Delay Differential Equations, Ain Shams Engineering Journal 5 (2014), 585–594.
  • Murray JD. Mathematical biology I: an introduction, inter appl. mathematics, 3rd ed., vol. 17. Berlin: Springer; 2002.
  • Park H., Hong K. S. Boundary control of container cranes, Proc. SPIE, Vol. 6042, 604210 (2005).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Bölüm Articles
Yazarlar

Behrouz Parsa Moghaddam Bu kişi benim

Zeynab salamat Mostaghim Bu kişi benim

Yayımlanma Tarihi 19 Ocak 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 2

Kaynak Göster

APA Moghaddam, B. P., & Mostaghim, Z. s. (2015). D*y(t) = f (t, y (t) , y (t *τ) , D*y(t), Dαy(t. New Trends in Mathematical Sciences, 3(2), 13-23.
AMA Moghaddam BP, Mostaghim Zs. D*y(t) = f (t, y (t) , y (t *τ) , D*y(t), Dαy(t. New Trends in Mathematical Sciences. Ocak 2015;3(2):13-23.
Chicago Moghaddam, Behrouz Parsa, ve Zeynab salamat Mostaghim. “D*y(t) = F (t, Y (t) , Y (t *τ) , D*y(t), Dαy(t”. New Trends in Mathematical Sciences 3, sy. 2 (Ocak 2015): 13-23.
EndNote Moghaddam BP, Mostaghim Zs (01 Ocak 2015) D*y(t) = f (t, y (t) , y (t *τ) , D*y(t), Dαy(t. New Trends in Mathematical Sciences 3 2 13–23.
IEEE B. P. Moghaddam ve Z. s. Mostaghim, “D*y(t) = f (t, y (t) , y (t *τ) , D*y(t), Dαy(t”, New Trends in Mathematical Sciences, c. 3, sy. 2, ss. 13–23, 2015.
ISNAD Moghaddam, Behrouz Parsa - Mostaghim, Zeynab salamat. “D*y(t) = F (t, Y (t) , Y (t *τ) , D*y(t), Dαy(t”. New Trends in Mathematical Sciences 3/2 (Ocak 2015), 13-23.
JAMA Moghaddam BP, Mostaghim Zs. D*y(t) = f (t, y (t) , y (t *τ) , D*y(t), Dαy(t. New Trends in Mathematical Sciences. 2015;3:13–23.
MLA Moghaddam, Behrouz Parsa ve Zeynab salamat Mostaghim. “D*y(t) = F (t, Y (t) , Y (t *τ) , D*y(t), Dαy(t”. New Trends in Mathematical Sciences, c. 3, sy. 2, 2015, ss. 13-23.
Vancouver Moghaddam BP, Mostaghim Zs. D*y(t) = f (t, y (t) , y (t *τ) , D*y(t), Dαy(t. New Trends in Mathematical Sciences. 2015;3(2):13-2.