BibTex RIS Kaynak Göster

Müntz-Legendre Matrix Method to solve Delay Fredholm Integro-Differential Equations with constant coefficients

Yıl 2015, Cilt: 3 Sayı: 2, 159 - 167, 19.01.2015

Öz

In this study, we present the M¨untz-Legendre matrix method to solve the linear delay Fredholm integro-differential equationswith constant coeffcients. By using this method, we obtain the approximate solutions in form of the M¨untz-Legendre polynomials. Themethod reduces the problem to a system of the algebraic equations by means of the required matrix relations of the solution form. Bysolving this system, the approximate solution is obtained. Also, an error estimation scheme based the residual function is presented forthe method and the approximate solutions are improved by this error estimation. Finally, the method will be illustrated on the examples

Kaynakça

  • A. Saadatmandi, M. Dehghan, Numerical solution of the higher-order linear Fredholm integro-differential–difference equation with variable coefficients, Comput. Math. Appl. 59 (2010) 2996–3004.
  • N. S¸ahin, S¸. Y¨uzbas¸ı, M. Sezer, A Bessel Polynomial approach for solving general linear Fredholm integro-differential-difference equations, Int. J. Comput. Math., 88(14) (2011) 3093-3111.
  • A. Aky¨uz-Das¸cıoglu M. Sezer, Chebyshev polynomial solutions of systems of higher-order linear Fredholm–Volterra integro- differential equations, J. Franklin Inst. 342 (2005) 688–701.
  • N. Kurt, M. Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Frankin Inst. 345 (2008), 839–850.
  • Kajani M.T., Ghasemi M. & Babolian E., Numerical solution of linear integro-differential equation by using sine–cosine wavelets, Appl. Math. Comput. 180 (2006) 569–574.
  • Yusufo˘glu E., Improved homotopy perturbation method for solving Fredholm type integro-differential equations, Chaos Solitons Fractals 41 (2009) 28–37.
  • Darania P., Ebadian A., A method for the numerical solution of the integro-differential equations, Appl. Math. Comput. 188 (2007) 657–668.
  • Y¨uksel G., Y¨uzbas¸ı S¸. & Sezer M., A Chebyshev Method for a class of high-order linear Fredholm integro-differential equations, J.Adv. Res. Appl. Math., 4(1) (2012) 49-67.
  • Shahmorad S., Numerical solution of general form linear Fredholm.Volterra integro differantial equations by the tau method with an error estimation, Appl. Math. Comput. 167 (2005) 1418-1429.
  • F.A. Oliveira, Collacation and residual correction,Numerische Mathematik, 36, 27-31, 1980.
  • ˙I. C¸ elik, Collocation method and residual correction using Chebyshev series, Applied Mathmematics and Computation, 174, 910- 920, 2006. [12] S¸. Y¨uzbas¸ı,
  • An efficient algorithm for solving multi-pantograph equation systems, Computers and Mathematics with
  • Applications, 64, 589-603, 2012.

M ¨untz-legendre matrix method to solve the delay fredholm integro-differential equations with constant coefficients

Yıl 2015, Cilt: 3 Sayı: 2, 159 - 167, 19.01.2015

Öz

Kaynakça

  • A. Saadatmandi, M. Dehghan, Numerical solution of the higher-order linear Fredholm integro-differential–difference equation with variable coefficients, Comput. Math. Appl. 59 (2010) 2996–3004.
  • N. S¸ahin, S¸. Y¨uzbas¸ı, M. Sezer, A Bessel Polynomial approach for solving general linear Fredholm integro-differential-difference equations, Int. J. Comput. Math., 88(14) (2011) 3093-3111.
  • A. Aky¨uz-Das¸cıoglu M. Sezer, Chebyshev polynomial solutions of systems of higher-order linear Fredholm–Volterra integro- differential equations, J. Franklin Inst. 342 (2005) 688–701.
  • N. Kurt, M. Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Frankin Inst. 345 (2008), 839–850.
  • Kajani M.T., Ghasemi M. & Babolian E., Numerical solution of linear integro-differential equation by using sine–cosine wavelets, Appl. Math. Comput. 180 (2006) 569–574.
  • Yusufo˘glu E., Improved homotopy perturbation method for solving Fredholm type integro-differential equations, Chaos Solitons Fractals 41 (2009) 28–37.
  • Darania P., Ebadian A., A method for the numerical solution of the integro-differential equations, Appl. Math. Comput. 188 (2007) 657–668.
  • Y¨uksel G., Y¨uzbas¸ı S¸. & Sezer M., A Chebyshev Method for a class of high-order linear Fredholm integro-differential equations, J.Adv. Res. Appl. Math., 4(1) (2012) 49-67.
  • Shahmorad S., Numerical solution of general form linear Fredholm.Volterra integro differantial equations by the tau method with an error estimation, Appl. Math. Comput. 167 (2005) 1418-1429.
  • F.A. Oliveira, Collacation and residual correction,Numerische Mathematik, 36, 27-31, 1980.
  • ˙I. C¸ elik, Collocation method and residual correction using Chebyshev series, Applied Mathmematics and Computation, 174, 910- 920, 2006. [12] S¸. Y¨uzbas¸ı,
  • An efficient algorithm for solving multi-pantograph equation systems, Computers and Mathematics with
  • Applications, 64, 589-603, 2012.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Bölüm Articles
Yazarlar

Şuayip Yüzbaşı Bu kişi benim

Emrah Gök Bu kişi benim

Mehmet Sezer Bu kişi benim

Yayımlanma Tarihi 19 Ocak 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 2

Kaynak Göster

APA Yüzbaşı, Ş., Gök, E., & Sezer, M. (2015). M ¨untz-legendre matrix method to solve the delay fredholm integro-differential equations with constant coefficients. New Trends in Mathematical Sciences, 3(2), 159-167.
AMA Yüzbaşı Ş, Gök E, Sezer M. M ¨untz-legendre matrix method to solve the delay fredholm integro-differential equations with constant coefficients. New Trends in Mathematical Sciences. Ocak 2015;3(2):159-167.
Chicago Yüzbaşı, Şuayip, Emrah Gök, ve Mehmet Sezer. “M ¨untz-Legendre Matrix Method to Solve the Delay Fredholm Integro-Differential Equations With Constant Coefficients”. New Trends in Mathematical Sciences 3, sy. 2 (Ocak 2015): 159-67.
EndNote Yüzbaşı Ş, Gök E, Sezer M (01 Ocak 2015) M ¨untz-legendre matrix method to solve the delay fredholm integro-differential equations with constant coefficients. New Trends in Mathematical Sciences 3 2 159–167.
IEEE Ş. Yüzbaşı, E. Gök, ve M. Sezer, “M ¨untz-legendre matrix method to solve the delay fredholm integro-differential equations with constant coefficients”, New Trends in Mathematical Sciences, c. 3, sy. 2, ss. 159–167, 2015.
ISNAD Yüzbaşı, Şuayip vd. “M ¨untz-Legendre Matrix Method to Solve the Delay Fredholm Integro-Differential Equations With Constant Coefficients”. New Trends in Mathematical Sciences 3/2 (Ocak 2015), 159-167.
JAMA Yüzbaşı Ş, Gök E, Sezer M. M ¨untz-legendre matrix method to solve the delay fredholm integro-differential equations with constant coefficients. New Trends in Mathematical Sciences. 2015;3:159–167.
MLA Yüzbaşı, Şuayip vd. “M ¨untz-Legendre Matrix Method to Solve the Delay Fredholm Integro-Differential Equations With Constant Coefficients”. New Trends in Mathematical Sciences, c. 3, sy. 2, 2015, ss. 159-67.
Vancouver Yüzbaşı Ş, Gök E, Sezer M. M ¨untz-legendre matrix method to solve the delay fredholm integro-differential equations with constant coefficients. New Trends in Mathematical Sciences. 2015;3(2):159-67.