BibTex RIS Kaynak Göster

A multivariate rational interpolation with no poles in ℝ^{m}

Yıl 2015, Cilt: 3 Sayı: 1, 19 - 28, 22.12.2014

Öz

The aim of this paper is to construct a family of rational interpolants that have no poles inRm. This method is an extensionof Floater and Hormanns method [1]. A priori error estimate for the method is given under some regularity conditions

Kaynakça

  • M.S. Floater, K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numerische Mathematik, 107 (2006) 315-331.
  • J. P. Berrut, H. D. Mittelmann, Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval, Comput. Math. Appl., 33 (1997) 77-86.
  • J. P. Berrut, Rational functions for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl., 15 (1988) 1-16.
  • J. P. Berrut, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004) 501-517.
  • J. P. Berrut, R. Baltensperger, H. D. Mittelmann, Recent developments in barycentric rational interpolation. Trends and Applications in Constructive Approximation(M. G. de Bruin, D. H. Mache, and J. Szabados, eds.), International Series of Numerical Mathematics, 151 (2005) 27-51.
  • A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer, New York, 2007.
  • G. M. Phillips, Interpolation and Approximation by Polynomials,Springer, New York, 2003.
  • B. M¨oßner, U. Reif, Error bounds for polynomial tensor product interpolation, Computing, 86 (2009) 185-197.
  • A. Sommariva, M. Vianello, R. Zanovello, Adaptive bivariate Chebyshev approximation, Numer. Algorithms 38 (2005) 79-94.

A multivariate rational interpolation with no poles in

Yıl 2015, Cilt: 3 Sayı: 1, 19 - 28, 22.12.2014

Öz

Kaynakça

  • M.S. Floater, K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numerische Mathematik, 107 (2006) 315-331.
  • J. P. Berrut, H. D. Mittelmann, Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval, Comput. Math. Appl., 33 (1997) 77-86.
  • J. P. Berrut, Rational functions for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl., 15 (1988) 1-16.
  • J. P. Berrut, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004) 501-517.
  • J. P. Berrut, R. Baltensperger, H. D. Mittelmann, Recent developments in barycentric rational interpolation. Trends and Applications in Constructive Approximation(M. G. de Bruin, D. H. Mache, and J. Szabados, eds.), International Series of Numerical Mathematics, 151 (2005) 27-51.
  • A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer, New York, 2007.
  • G. M. Phillips, Interpolation and Approximation by Polynomials,Springer, New York, 2003.
  • B. M¨oßner, U. Reif, Error bounds for polynomial tensor product interpolation, Computing, 86 (2009) 185-197.
  • A. Sommariva, M. Vianello, R. Zanovello, Adaptive bivariate Chebyshev approximation, Numer. Algorithms 38 (2005) 79-94.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Bölüm Articles
Yazarlar

Osman Işık Bu kişi benim

Zekeriya Güney Bu kişi benim

Mehmwt Sezer Bu kişi benim

Yayımlanma Tarihi 22 Aralık 2014
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 1

Kaynak Göster

APA Işık, O., Güney, Z., & Sezer, M. (2014). A multivariate rational interpolation with no poles in. New Trends in Mathematical Sciences, 3(1), 19-28.
AMA Işık O, Güney Z, Sezer M. A multivariate rational interpolation with no poles in. New Trends in Mathematical Sciences. Aralık 2014;3(1):19-28.
Chicago Işık, Osman, Zekeriya Güney, ve Mehmwt Sezer. “A Multivariate Rational Interpolation With No Poles in”. New Trends in Mathematical Sciences 3, sy. 1 (Aralık 2014): 19-28.
EndNote Işık O, Güney Z, Sezer M (01 Aralık 2014) A multivariate rational interpolation with no poles in. New Trends in Mathematical Sciences 3 1 19–28.
IEEE O. Işık, Z. Güney, ve M. Sezer, “A multivariate rational interpolation with no poles in”, New Trends in Mathematical Sciences, c. 3, sy. 1, ss. 19–28, 2014.
ISNAD Işık, Osman vd. “A Multivariate Rational Interpolation With No Poles in”. New Trends in Mathematical Sciences 3/1 (Aralık 2014), 19-28.
JAMA Işık O, Güney Z, Sezer M. A multivariate rational interpolation with no poles in. New Trends in Mathematical Sciences. 2014;3:19–28.
MLA Işık, Osman vd. “A Multivariate Rational Interpolation With No Poles in”. New Trends in Mathematical Sciences, c. 3, sy. 1, 2014, ss. 19-28.
Vancouver Işık O, Güney Z, Sezer M. A multivariate rational interpolation with no poles in. New Trends in Mathematical Sciences. 2014;3(1):19-28.