In this paper we introduce the sequence spaces ( , , , ), Λ( , , , ) and define a semi normed space ( , ) semi normed by . We study some properties of these sequence spaces and obtain some inclusion relations
Y. Altin and M. Et, Generalized di_erence sequences spaces de_ned by a modulus function in a locally convex space, Soochow J. Math. 31(1) (2005), 233-243.
H. I. Brown, The summability _eld of a perfect l{l method of summation, J. Anal. Math., 20 (1967), 281-287.
R. Colak, M. Et, and E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, 2004.
C. Go_man and G. Pedrick, First Course in Functional Analysis, Prentice Hall India, New Delhi, 1974.
P. K. Kamthan and M. Gupta, Sequence spaces and Series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, 1981.
I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
I. J. Maddox, Sequence spaces de_ned by a modulus, Math. Proc., Cambridge Philos. Soc. 100 (1986), 161-166.
H. Nakano, \Concave modulars", Journal of the Mathematical Society of Japan, 5(1) (1953), 29-49.
W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
S. M. Sirajudeen, Matrix Transformation of Co(P), l∞(P), lP and l into χ, Indian J. Pure Appl. Math., 12(9), (1981), 1106-1113.
B. C. Tripathy, S. Mahanta and M. Et, On a class of generalized difference sequence space de_ned by modulus function, Hakkaido Math. Jour., XXXIV (3) (2005), 667{677.
A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, 1964.
A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol. 85 (1984).
Y. Altin and M. Et, Generalized di_erence sequences spaces de_ned by a modulus function in a locally convex space, Soochow J. Math. 31(1) (2005), 233-243.
H. I. Brown, The summability _eld of a perfect l{l method of summation, J. Anal. Math., 20 (1967), 281-287.
R. Colak, M. Et, and E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, 2004.
C. Go_man and G. Pedrick, First Course in Functional Analysis, Prentice Hall India, New Delhi, 1974.
P. K. Kamthan and M. Gupta, Sequence spaces and Series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, 1981.
I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
I. J. Maddox, Sequence spaces de_ned by a modulus, Math. Proc., Cambridge Philos. Soc. 100 (1986), 161-166.
H. Nakano, \Concave modulars", Journal of the Mathematical Society of Japan, 5(1) (1953), 29-49.
W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
S. M. Sirajudeen, Matrix Transformation of Co(P), l∞(P), lP and l into χ, Indian J. Pure Appl. Math., 12(9), (1981), 1106-1113.
B. C. Tripathy, S. Mahanta and M. Et, On a class of generalized difference sequence space de_ned by modulus function, Hakkaido Math. Jour., XXXIV (3) (2005), 667{677.
A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, 1964.
A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol. 85 (1984).
Subramanıan, N., Thirunavukarasu, P., & Babu, R. (2014). The semi normed space defined by sequences. New Trends in Mathematical Sciences, 2(2), 125-128.
AMA
Subramanıan N, Thirunavukarasu P, Babu R. The semi normed space defined by sequences. New Trends in Mathematical Sciences. Ağustos 2014;2(2):125-128.
Chicago
Subramanıan, Nagarajan, Peruyannan. Thirunavukarasu, ve Raman Babu. “The Semi Normed Space Defined by Sequences”. New Trends in Mathematical Sciences 2, sy. 2 (Ağustos 2014): 125-28.
EndNote
Subramanıan N, Thirunavukarasu P, Babu R (01 Ağustos 2014) The semi normed space defined by sequences. New Trends in Mathematical Sciences 2 2 125–128.
IEEE
N. Subramanıan, P. Thirunavukarasu, ve R. Babu, “The semi normed space defined by sequences”, New Trends in Mathematical Sciences, c. 2, sy. 2, ss. 125–128, 2014.
ISNAD
Subramanıan, Nagarajan vd. “The Semi Normed Space Defined by Sequences”. New Trends in Mathematical Sciences 2/2 (Ağustos 2014), 125-128.
JAMA
Subramanıan N, Thirunavukarasu P, Babu R. The semi normed space defined by sequences. New Trends in Mathematical Sciences. 2014;2:125–128.
MLA
Subramanıan, Nagarajan vd. “The Semi Normed Space Defined by Sequences”. New Trends in Mathematical Sciences, c. 2, sy. 2, 2014, ss. 125-8.
Vancouver
Subramanıan N, Thirunavukarasu P, Babu R. The semi normed space defined by sequences. New Trends in Mathematical Sciences. 2014;2(2):125-8.