BibTex RIS Kaynak Göster

The Semi normed space defined~by~$\chi$~sequences

Yıl 2014, Cilt: 2 Sayı: 2, 125 - 128, 01.08.2014

Öz

In this paper we introduce the sequence spaces ( , , , ), Λ( , , , ) and define a semi normed space ( , ) semi normed by . We study some properties of these sequence spaces and obtain some inclusion relations

Kaynakça

  • Y. Altin and M. Et, Generalized di_erence sequences spaces de_ned by a modulus function in a locally convex space, Soochow J. Math. 31(1) (2005), 233-243.
  • H. I. Brown, The summability _eld of a perfect l{l method of summation, J. Anal. Math., 20 (1967), 281-287.
  • R. Colak, M. Et, and E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, 2004.
  • C. Go_man and G. Pedrick, First Course in Functional Analysis, Prentice Hall India, New Delhi, 1974.
  • P. K. Kamthan and M. Gupta, Sequence spaces and Series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, 1981.
  • I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
  • I. J. Maddox, Sequence spaces de_ned by a modulus, Math. Proc., Cambridge Philos. Soc. 100 (1986), 161-166.
  • H. Nakano, \Concave modulars", Journal of the Mathematical Society of Japan, 5(1) (1953), 29-49.
  • W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
  • S. M. Sirajudeen, Matrix Transformation of Co(P), l∞(P), lP and l into χ, Indian J. Pure Appl. Math., 12(9), (1981), 1106-1113.
  • B. C. Tripathy, S. Mahanta and M. Et, On a class of generalized difference sequence space de_ned by modulus function, Hakkaido Math. Jour., XXXIV (3) (2005), 667{677.
  • A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, 1964.
  • A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol. 85 (1984).

The semi normed space defined by sequences

Yıl 2014, Cilt: 2 Sayı: 2, 125 - 128, 01.08.2014

Öz

Kaynakça

  • Y. Altin and M. Et, Generalized di_erence sequences spaces de_ned by a modulus function in a locally convex space, Soochow J. Math. 31(1) (2005), 233-243.
  • H. I. Brown, The summability _eld of a perfect l{l method of summation, J. Anal. Math., 20 (1967), 281-287.
  • R. Colak, M. Et, and E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, 2004.
  • C. Go_man and G. Pedrick, First Course in Functional Analysis, Prentice Hall India, New Delhi, 1974.
  • P. K. Kamthan and M. Gupta, Sequence spaces and Series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, 1981.
  • I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
  • I. J. Maddox, Sequence spaces de_ned by a modulus, Math. Proc., Cambridge Philos. Soc. 100 (1986), 161-166.
  • H. Nakano, \Concave modulars", Journal of the Mathematical Society of Japan, 5(1) (1953), 29-49.
  • W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
  • S. M. Sirajudeen, Matrix Transformation of Co(P), l∞(P), lP and l into χ, Indian J. Pure Appl. Math., 12(9), (1981), 1106-1113.
  • B. C. Tripathy, S. Mahanta and M. Et, On a class of generalized difference sequence space de_ned by modulus function, Hakkaido Math. Jour., XXXIV (3) (2005), 667{677.
  • A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, 1964.
  • A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol. 85 (1984).
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Bölüm Articles
Yazarlar

Nagarajan Subramanıan Bu kişi benim

Peruyannan. Thirunavukarasu Bu kişi benim

Raman Babu Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 2 Sayı: 2

Kaynak Göster

APA Subramanıan, N., Thirunavukarasu, P., & Babu, R. (2014). The semi normed space defined by sequences. New Trends in Mathematical Sciences, 2(2), 125-128.
AMA Subramanıan N, Thirunavukarasu P, Babu R. The semi normed space defined by sequences. New Trends in Mathematical Sciences. Ağustos 2014;2(2):125-128.
Chicago Subramanıan, Nagarajan, Peruyannan. Thirunavukarasu, ve Raman Babu. “The Semi Normed Space Defined by Sequences”. New Trends in Mathematical Sciences 2, sy. 2 (Ağustos 2014): 125-28.
EndNote Subramanıan N, Thirunavukarasu P, Babu R (01 Ağustos 2014) The semi normed space defined by sequences. New Trends in Mathematical Sciences 2 2 125–128.
IEEE N. Subramanıan, P. Thirunavukarasu, ve R. Babu, “The semi normed space defined by sequences”, New Trends in Mathematical Sciences, c. 2, sy. 2, ss. 125–128, 2014.
ISNAD Subramanıan, Nagarajan vd. “The Semi Normed Space Defined by Sequences”. New Trends in Mathematical Sciences 2/2 (Ağustos 2014), 125-128.
JAMA Subramanıan N, Thirunavukarasu P, Babu R. The semi normed space defined by sequences. New Trends in Mathematical Sciences. 2014;2:125–128.
MLA Subramanıan, Nagarajan vd. “The Semi Normed Space Defined by Sequences”. New Trends in Mathematical Sciences, c. 2, sy. 2, 2014, ss. 125-8.
Vancouver Subramanıan N, Thirunavukarasu P, Babu R. The semi normed space defined by sequences. New Trends in Mathematical Sciences. 2014;2(2):125-8.