Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical simulation for SI model with variable-order fractional

Yıl 2016, Cilt: 4 Sayı: 2, 45 - 55, 01.03.2016

Öz

In this paper numerical studies for the variable-order fractional delay differential equations are presented. Adams-Bashforth-Moulton algorithm has been extended to study this problem, where the derivative is defined in the Caputo variable-order fractional sense. Numerical test examples are presented to demonstrate utility of the method. Chaotic behaviors are observed in variable-order one dimensional delayed systems.

Kaynakça

  • E. Fridman, L. Fridman and E. Shustin, Steady modes in relay control systems with time delay and periodic disturbances, J. Dyn. Sys., Meas., Control, 122(4), 732-737, 2000.
  • L. C. Davis, Modification of the optimal velocity traffic model to include delay due to driver reaction time, Physica A, 319, 557-567, 2002.
  • Y. Kuang, Delay differential equations with applications in population biology, Academic Press, Boston, San Diego, New York, 1993.
  • I. Epstein and Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the oregonator, J. Chem. Phys., 95, 244-254, 1991.
  • S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Journal of Fractional Calculus and Applications, 1(5), 1-9, 2011.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, Germany, 2010.
  • K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 3-22, 2002.
  • C. F. M. Coimbra, Mechanics with variable-order differential operators, Annulet der Physic, 12(11-12), 692-703, 2003.
  • C. F. Lorenzo, T.T. Hartley, The vector linear fractional initialization problem, National Aeronautics and Space Administration, Glenn Research Center, 1999.
  • R. Lin, F. Liu , V. Anh, I. Turner, Stability and convergence of a new explicit FDM for the variable-order nonlinear fractional diffusion equation, Applied Mathematics and Computation, 212, 435-445, 2009.
  • S. Ma, Y. Xu, and W. Yue, Numerical solutions of a variable-order fractional financial system, Hindawi Publishing Corporation Journal of Applied Mathematics, 14, 1-15, 2012.
  • P. L. Butzer and U.Westphal, An introduction to fractional calculus, World Scientific, Singapore, 2000.
  • S. Umarov and S. Steinberg, Variable order differential equations with piecewise constant order function and diffusion with changing modes, Zeitschrift Analysis and Anwendungen, 28(4), 131-150, 2009.
  • N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical Simulations For Variable-Order Fractional Nonlinear Delay Differential equations Journal of Fractional Calculus and Applications,6(1) Jan. 2015, pp. 71-82.
  • M. M. Khader, N. H. Sweilam, A. M. S. Mahdy and N. K. Abdel Moniem, Numerical Simulation for the Fractional SIRC Model and Influenza A, Applied Mathematics & Information Sciences Appl. Math. Inf. Sci. 3, 1-8 (2014).
  • N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical simulations for Variable-order fractional nonlinear delay differential equations, 6, 71-82, 2015.
Yıl 2016, Cilt: 4 Sayı: 2, 45 - 55, 01.03.2016

Öz

Kaynakça

  • E. Fridman, L. Fridman and E. Shustin, Steady modes in relay control systems with time delay and periodic disturbances, J. Dyn. Sys., Meas., Control, 122(4), 732-737, 2000.
  • L. C. Davis, Modification of the optimal velocity traffic model to include delay due to driver reaction time, Physica A, 319, 557-567, 2002.
  • Y. Kuang, Delay differential equations with applications in population biology, Academic Press, Boston, San Diego, New York, 1993.
  • I. Epstein and Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the oregonator, J. Chem. Phys., 95, 244-254, 1991.
  • S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Journal of Fractional Calculus and Applications, 1(5), 1-9, 2011.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, Germany, 2010.
  • K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 3-22, 2002.
  • C. F. M. Coimbra, Mechanics with variable-order differential operators, Annulet der Physic, 12(11-12), 692-703, 2003.
  • C. F. Lorenzo, T.T. Hartley, The vector linear fractional initialization problem, National Aeronautics and Space Administration, Glenn Research Center, 1999.
  • R. Lin, F. Liu , V. Anh, I. Turner, Stability and convergence of a new explicit FDM for the variable-order nonlinear fractional diffusion equation, Applied Mathematics and Computation, 212, 435-445, 2009.
  • S. Ma, Y. Xu, and W. Yue, Numerical solutions of a variable-order fractional financial system, Hindawi Publishing Corporation Journal of Applied Mathematics, 14, 1-15, 2012.
  • P. L. Butzer and U.Westphal, An introduction to fractional calculus, World Scientific, Singapore, 2000.
  • S. Umarov and S. Steinberg, Variable order differential equations with piecewise constant order function and diffusion with changing modes, Zeitschrift Analysis and Anwendungen, 28(4), 131-150, 2009.
  • N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical Simulations For Variable-Order Fractional Nonlinear Delay Differential equations Journal of Fractional Calculus and Applications,6(1) Jan. 2015, pp. 71-82.
  • M. M. Khader, N. H. Sweilam, A. M. S. Mahdy and N. K. Abdel Moniem, Numerical Simulation for the Fractional SIRC Model and Influenza A, Applied Mathematics & Information Sciences Appl. Math. Inf. Sci. 3, 1-8 (2014).
  • N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical simulations for Variable-order fractional nonlinear delay differential equations, 6, 71-82, 2015.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Hanaa Abdel Hameed Asfour Bu kişi benim

Mohamed Gamal M. Ibrahim Bu kişi benim

Yayımlanma Tarihi 1 Mart 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Asfour, H. A. H., & Ibrahim, M. G. M. (2016). Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences, 4(2), 45-55.
AMA Asfour HAH, Ibrahim MGM. Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences. Mart 2016;4(2):45-55.
Chicago Asfour, Hanaa Abdel Hameed, ve Mohamed Gamal M. Ibrahim. “Numerical Simulation for SI Model With Variable-Order Fractional”. New Trends in Mathematical Sciences 4, sy. 2 (Mart 2016): 45-55.
EndNote Asfour HAH, Ibrahim MGM (01 Mart 2016) Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences 4 2 45–55.
IEEE H. A. H. Asfour ve M. G. M. Ibrahim, “Numerical simulation for SI model with variable-order fractional”, New Trends in Mathematical Sciences, c. 4, sy. 2, ss. 45–55, 2016.
ISNAD Asfour, Hanaa Abdel Hameed - Ibrahim, Mohamed Gamal M. “Numerical Simulation for SI Model With Variable-Order Fractional”. New Trends in Mathematical Sciences 4/2 (Mart 2016), 45-55.
JAMA Asfour HAH, Ibrahim MGM. Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences. 2016;4:45–55.
MLA Asfour, Hanaa Abdel Hameed ve Mohamed Gamal M. Ibrahim. “Numerical Simulation for SI Model With Variable-Order Fractional”. New Trends in Mathematical Sciences, c. 4, sy. 2, 2016, ss. 45-55.
Vancouver Asfour HAH, Ibrahim MGM. Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences. 2016;4(2):45-5.