Araştırma Makalesi
BibTex RIS Kaynak Göster

Convergence of double singular integrals in weighted L_p spaces

Yıl 2016, Cilt: 4 Sayı: 3, 151 - 161, 30.09.2016

Öz




The paper is devoted to the study of pointwise
approximation of functions
 by double singular integral
operators with radial kernels at
generalized Lebesgue points. Here,  is a weight function satisfying
some sharp conditions and
 is the collection of all measurable
and non-integrable functions for which
 is integrable on  where  is an arbitrary bounded open, semi
open or closed region or




Kaynakça

  • G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1960.
  • C. Bardaro, On approximation properties for some classes of linear operators of convolution type, Atti Sem. Mat. Fis. Univ. Modena 33 (1984), 329-356.
  • S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies, no. 19, Princeton Univ. Press, Princeton, N. J. Oxford Univ. Press, London, 1949.
  • S. Esen, Convergence and the order of convergence of family of nonconvolution type integral operators at characteristic points, Ph. D. Thesis, Ankara University, Graduate School of Applied Science, Ankara, 2002.
  • S. Esen, Approximation of functions by the family of integral operators with positive kernels, Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 22 (2002), no. 1, Math. Mech., 56–61, 253.
  • A. D. Gadjiev, The order of convergence of singular integrals which depend on two parameters, In: Special Problems of Functional Analysis and their Appl. to the Theory of Diff. Eq. and the Theory of Func., Izdat. Akad. Nauk Azerbaidzan. SSR, (1968), 40–44.
  • S. R. Ghorpade and B. V. Limaye, A Course in Multivariable Calculus and Analysis, Springer, New York, 2010.
  • H. Karsli and E. Ibikli, On convergence of convolution type singular integral operators depending on two parameters, Fasc. Math. 38 (2007), 25-39.
  • R. G. Mamedov, A study of the orders of convergence of higher-dimensional singular integrals, (Russian) Akad. Nauk Azerba13 ̆053'fdžan. SSR Dokl. 18 (1962), no. 11, 9–13.
  • R. G. Mamedov, A generalization of some results on the order of convergence of singular integrals, (Russian) Akad. Nauk Azerba13 ̆053'fdžan. SSR Dokl. 18 (1962), no. 3, 3–7.
  • R. G. Mamedov, On the order of convergence of m-singular integrals at generalized Lebesgue points and in the space Lp(-∞,∞), Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), no. 2, 287-304.
  • R. G. Mamedov, A study of orders of convergence of one-dimensional and multidimensional singular integrals, (Russian), In: Studies in Theory of Differential Equations and Theory of Functions (Russian), Izdat. Akad. Nauk Azerba13 ̆053'fdžan. SSR, (1965), 92-108.
  • V. N. Mishra and L. N. Mishra, Trigonometric approximation of signals (functions) in Lp-norm, Int. J. Contemp. Math. Sci. 7 (2012), no. 17-20, 909–918.
  • P. Patel and V. N. Mishra, Approximation properties of certain summation integral type operators, Demonstr. Math. 48 (2015), no. 1, 77–90.
  • W. Rudin, Real and Complex Analysis. Mc-Graw Hill Book Co., London, 1987.
  • B. Rydzewska, Approximation des fonctions par des intégrales singulières ordinaires, Fasc. Math. 7 (1973), 71-81.
  • E. M. Stein, Singular Integrals and Differentiability of Functions, Princeton Univ. Press, New Jersey, 1970.
  • R. Taberski, Singular integrals depending on two parameters, Prace Mat. 7 (1962), 173-179.
  • R. Taberski, On double integrals and Fourier Series, Ann. Polon. Math. 15 (1964), 97–115.
  • R. Taberski, On double singular integrals, Comment. Math. Prace Mat. 19 (1976), no.1, 155-160.
  • G. Uysal and M. M. Yilmaz, Some theorems on the approximation of non-integrable functions via singular integral operators, Proc. Jangjeon Math. Soc. 18 (2015), no. 2, 241-251.
  • M. M. Yilmaz, G. Uysal and E. Ibikli, A note on rate of convergence of double singular integral operators, Adv. Difference Equ. (2014), no. 287, 1-13.
Yıl 2016, Cilt: 4 Sayı: 3, 151 - 161, 30.09.2016

Öz

Kaynakça

  • G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1960.
  • C. Bardaro, On approximation properties for some classes of linear operators of convolution type, Atti Sem. Mat. Fis. Univ. Modena 33 (1984), 329-356.
  • S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies, no. 19, Princeton Univ. Press, Princeton, N. J. Oxford Univ. Press, London, 1949.
  • S. Esen, Convergence and the order of convergence of family of nonconvolution type integral operators at characteristic points, Ph. D. Thesis, Ankara University, Graduate School of Applied Science, Ankara, 2002.
  • S. Esen, Approximation of functions by the family of integral operators with positive kernels, Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 22 (2002), no. 1, Math. Mech., 56–61, 253.
  • A. D. Gadjiev, The order of convergence of singular integrals which depend on two parameters, In: Special Problems of Functional Analysis and their Appl. to the Theory of Diff. Eq. and the Theory of Func., Izdat. Akad. Nauk Azerbaidzan. SSR, (1968), 40–44.
  • S. R. Ghorpade and B. V. Limaye, A Course in Multivariable Calculus and Analysis, Springer, New York, 2010.
  • H. Karsli and E. Ibikli, On convergence of convolution type singular integral operators depending on two parameters, Fasc. Math. 38 (2007), 25-39.
  • R. G. Mamedov, A study of the orders of convergence of higher-dimensional singular integrals, (Russian) Akad. Nauk Azerba13 ̆053'fdžan. SSR Dokl. 18 (1962), no. 11, 9–13.
  • R. G. Mamedov, A generalization of some results on the order of convergence of singular integrals, (Russian) Akad. Nauk Azerba13 ̆053'fdžan. SSR Dokl. 18 (1962), no. 3, 3–7.
  • R. G. Mamedov, On the order of convergence of m-singular integrals at generalized Lebesgue points and in the space Lp(-∞,∞), Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), no. 2, 287-304.
  • R. G. Mamedov, A study of orders of convergence of one-dimensional and multidimensional singular integrals, (Russian), In: Studies in Theory of Differential Equations and Theory of Functions (Russian), Izdat. Akad. Nauk Azerba13 ̆053'fdžan. SSR, (1965), 92-108.
  • V. N. Mishra and L. N. Mishra, Trigonometric approximation of signals (functions) in Lp-norm, Int. J. Contemp. Math. Sci. 7 (2012), no. 17-20, 909–918.
  • P. Patel and V. N. Mishra, Approximation properties of certain summation integral type operators, Demonstr. Math. 48 (2015), no. 1, 77–90.
  • W. Rudin, Real and Complex Analysis. Mc-Graw Hill Book Co., London, 1987.
  • B. Rydzewska, Approximation des fonctions par des intégrales singulières ordinaires, Fasc. Math. 7 (1973), 71-81.
  • E. M. Stein, Singular Integrals and Differentiability of Functions, Princeton Univ. Press, New Jersey, 1970.
  • R. Taberski, Singular integrals depending on two parameters, Prace Mat. 7 (1962), 173-179.
  • R. Taberski, On double integrals and Fourier Series, Ann. Polon. Math. 15 (1964), 97–115.
  • R. Taberski, On double singular integrals, Comment. Math. Prace Mat. 19 (1976), no.1, 155-160.
  • G. Uysal and M. M. Yilmaz, Some theorems on the approximation of non-integrable functions via singular integral operators, Proc. Jangjeon Math. Soc. 18 (2015), no. 2, 241-251.
  • M. M. Yilmaz, G. Uysal and E. Ibikli, A note on rate of convergence of double singular integral operators, Adv. Difference Equ. (2014), no. 287, 1-13.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Gumrah Uysal

Ertan Ibikli Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 3

Kaynak Göster

APA Uysal, G., & Ibikli, E. (2016). Convergence of double singular integrals in weighted L_p spaces. New Trends in Mathematical Sciences, 4(3), 151-161.
AMA Uysal G, Ibikli E. Convergence of double singular integrals in weighted L_p spaces. New Trends in Mathematical Sciences. Eylül 2016;4(3):151-161.
Chicago Uysal, Gumrah, ve Ertan Ibikli. “Convergence of Double Singular Integrals in Weighted L_p Spaces”. New Trends in Mathematical Sciences 4, sy. 3 (Eylül 2016): 151-61.
EndNote Uysal G, Ibikli E (01 Eylül 2016) Convergence of double singular integrals in weighted L_p spaces. New Trends in Mathematical Sciences 4 3 151–161.
IEEE G. Uysal ve E. Ibikli, “Convergence of double singular integrals in weighted L_p spaces”, New Trends in Mathematical Sciences, c. 4, sy. 3, ss. 151–161, 2016.
ISNAD Uysal, Gumrah - Ibikli, Ertan. “Convergence of Double Singular Integrals in Weighted L_p Spaces”. New Trends in Mathematical Sciences 4/3 (Eylül 2016), 151-161.
JAMA Uysal G, Ibikli E. Convergence of double singular integrals in weighted L_p spaces. New Trends in Mathematical Sciences. 2016;4:151–161.
MLA Uysal, Gumrah ve Ertan Ibikli. “Convergence of Double Singular Integrals in Weighted L_p Spaces”. New Trends in Mathematical Sciences, c. 4, sy. 3, 2016, ss. 151-6.
Vancouver Uysal G, Ibikli E. Convergence of double singular integrals in weighted L_p spaces. New Trends in Mathematical Sciences. 2016;4(3):151-6.