H. H. Bauschke, X. Wang and L. Yao, An answer to S. Simons’ question on the maximal monotonicity of the sum of a maximal monotone linear operator and a normal cone operator, Set-Valued Var. Anal. 17 (2009) 195-201.
H. H. Bauschke, X. Wang and L. Yao, On the maximal mono tonicity of the sum of a maximal monotone linear relation and the subdifferential operator of a sublinear function, Proceedings of the Haifa Workshop on Optimization Theory and Related Topics. Contemp. Math., Amer. Math. Soc., Providence, RI 568 (2012) 19-26.
J. M. Borwein, Maximality of sums of two maximal monotone operators in general Banach space, P. Am. Math. Soc. 135 (2007) 3917-3924.
J. M. Borwein and L. Yao, Maximality of the sum of a maximally monotone linear relation and a maximally monotone operator, Set-Valued Var Anal. 21 (2013) 603-616.
J. M. Borwein and L. Yao, Structure theory for maximally monotone operators with points of continuity, J. Optim Theory Appl. 157 (2013) 1-24 http://dx.doi.org/10.1007/s10957-012-0162-y.
J.M. Borwein and L. Yao, Sum theorems for maximally monotone operators of type (FPV), J. Aust. Math. Soc. 97 (2014) 1-26.
S. Fitzpatrick, Representing monotone operators by convex functions, in Work- shop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, Australia, 20 (1988) 59-65.
R.T. Rockafellar, Local boundedness of nonlinear, monotone operators, Mich. Math. J. 16 (1969) 397-407.
R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, T. Am. Math. Soc. 149 (1970) 75-88.
R. Rudin, Functional Analysis, Second Edition, McGraw-Hill, 1991.
S. Simons, Minimax and Monotonicity, Springer-Verlag, 1998.
S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.
M.D. Voisei, The sum and chain rules for maximal monotone operators, Set-Valued Var. Anal. 16 (2008) 461-476.
L. Yao, The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone, Set-Valued Var. Anal. 20 (2012) 155-167.
L. Yao, Maximality of the sum of the subdifferential operator and a maximally monotone operator, arXiv: 1406.7664v1[math.FA] 30 Jun 2014, http://arxiv.org/pdf/1406.7664.pdf.
C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, 2002.
On sum of monotone operator of type (FPV) and a maximal monotone operator
H. H. Bauschke, X. Wang and L. Yao, An answer to S. Simons’ question on the maximal monotonicity of the sum of a maximal monotone linear operator and a normal cone operator, Set-Valued Var. Anal. 17 (2009) 195-201.
H. H. Bauschke, X. Wang and L. Yao, On the maximal mono tonicity of the sum of a maximal monotone linear relation and the subdifferential operator of a sublinear function, Proceedings of the Haifa Workshop on Optimization Theory and Related Topics. Contemp. Math., Amer. Math. Soc., Providence, RI 568 (2012) 19-26.
J. M. Borwein, Maximality of sums of two maximal monotone operators in general Banach space, P. Am. Math. Soc. 135 (2007) 3917-3924.
J. M. Borwein and L. Yao, Maximality of the sum of a maximally monotone linear relation and a maximally monotone operator, Set-Valued Var Anal. 21 (2013) 603-616.
J. M. Borwein and L. Yao, Structure theory for maximally monotone operators with points of continuity, J. Optim Theory Appl. 157 (2013) 1-24 http://dx.doi.org/10.1007/s10957-012-0162-y.
J.M. Borwein and L. Yao, Sum theorems for maximally monotone operators of type (FPV), J. Aust. Math. Soc. 97 (2014) 1-26.
S. Fitzpatrick, Representing monotone operators by convex functions, in Work- shop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, Australia, 20 (1988) 59-65.
R.T. Rockafellar, Local boundedness of nonlinear, monotone operators, Mich. Math. J. 16 (1969) 397-407.
R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, T. Am. Math. Soc. 149 (1970) 75-88.
R. Rudin, Functional Analysis, Second Edition, McGraw-Hill, 1991.
S. Simons, Minimax and Monotonicity, Springer-Verlag, 1998.
S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.
M.D. Voisei, The sum and chain rules for maximal monotone operators, Set-Valued Var. Anal. 16 (2008) 461-476.
L. Yao, The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone, Set-Valued Var. Anal. 20 (2012) 155-167.
L. Yao, Maximality of the sum of the subdifferential operator and a maximally monotone operator, arXiv: 1406.7664v1[math.FA] 30 Jun 2014, http://arxiv.org/pdf/1406.7664.pdf.
C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, 2002.
Pradhan, D. K., & Pattanaik, S. R. (2016). On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences, 4(4), 188-197.
AMA
Pradhan DK, Pattanaik SR. On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences. Aralık 2016;4(4):188-197.
Chicago
Pradhan, D. K., ve S. R. Pattanaik. “On Sum of Monotone Operator of Type (FPV) and a Maximal Monotone Operator”. New Trends in Mathematical Sciences 4, sy. 4 (Aralık 2016): 188-97.
EndNote
Pradhan DK, Pattanaik SR (01 Aralık 2016) On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences 4 4 188–197.
IEEE
D. K. Pradhan ve S. R. Pattanaik, “On sum of monotone operator of type (FPV) and a maximal monotone operator”, New Trends in Mathematical Sciences, c. 4, sy. 4, ss. 188–197, 2016.
ISNAD
Pradhan, D. K. - Pattanaik, S. R. “On Sum of Monotone Operator of Type (FPV) and a Maximal Monotone Operator”. New Trends in Mathematical Sciences 4/4 (Aralık 2016), 188-197.
JAMA
Pradhan DK, Pattanaik SR. On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences. 2016;4:188–197.
MLA
Pradhan, D. K. ve S. R. Pattanaik. “On Sum of Monotone Operator of Type (FPV) and a Maximal Monotone Operator”. New Trends in Mathematical Sciences, c. 4, sy. 4, 2016, ss. 188-97.
Vancouver
Pradhan DK, Pattanaik SR. On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences. 2016;4(4):188-97.