Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 4 Sayı: 4, 239 - 244, 31.12.2016

Öz

Kaynakça

  • Birkhoff G. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
  • Blyth T. S. Lattices and Ordered Algebric Structures. Berlin: Springer,2005.
  • Ertugrul U., Kesicioğlu M. N., F. Karaçal, Ordering based on uninorms, Information Sciences, 330(2016) 315-327.
  • Ertugrul U., Karaçal F., Mesiar R., Modified ordinal sums of triangular norms and triangular conorms on bounded lattices, International Journal of Intelligent Systems, 30 (2015) 807-817.
  • Gratzer G. General Lattice Theory. Berlin: Akademie, 1978.
  • Höhle U. Commutative, Residuated l- monoids, in: U. Ho ̈hle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995.
  • Karacal F., Ertugrul U., Mesiar R., Characterization of uninorms on bounded lattices, Fuzzy Sets Systems (2016), http://dx.doi.org/10.1016/j.fss.2016.05.014
  • Karacal F., Khadjiev Dj. ∨_- distributive and infinitely ∨_-distributive t-norms on complete lattice. Fuzzy Sets and Systems 2005; 151: 341-352.
  • Kesicioglu M. N., Karaçal F. Mesiar R. Order-equivalent triangular norms. Fuzzy Sets and Systems 2015; 268: 59-71.
  • Klement E. P., Mesiar R. Pap E. Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain, Fuzziness Knowledge-Based Systems 2000; 8: 701-717.
  • Klement E. P., Mesiar R. Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.
  • Klement E. P., Weber S. An integral representation for decomposable measures of measurable functions. Aequationes Math. 1994; 47: 255-262.
  • Kolesárová A. On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 1997; 5: 759-766.
  • Mitsch H. A natural partial order for semigroups. Proceedings of the American Mathematical Society 1986; 97: 384-388.
  • Zhang D. Triangular Norms on Partially Ordered Sets. Fuzzy Sets and Systems 2005; 153: 195-209.

Some properties of K_⪯ set

Yıl 2016, Cilt: 4 Sayı: 4, 239 - 244, 31.12.2016

Öz


Kaynakça

  • Birkhoff G. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
  • Blyth T. S. Lattices and Ordered Algebric Structures. Berlin: Springer,2005.
  • Ertugrul U., Kesicioğlu M. N., F. Karaçal, Ordering based on uninorms, Information Sciences, 330(2016) 315-327.
  • Ertugrul U., Karaçal F., Mesiar R., Modified ordinal sums of triangular norms and triangular conorms on bounded lattices, International Journal of Intelligent Systems, 30 (2015) 807-817.
  • Gratzer G. General Lattice Theory. Berlin: Akademie, 1978.
  • Höhle U. Commutative, Residuated l- monoids, in: U. Ho ̈hle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995.
  • Karacal F., Ertugrul U., Mesiar R., Characterization of uninorms on bounded lattices, Fuzzy Sets Systems (2016), http://dx.doi.org/10.1016/j.fss.2016.05.014
  • Karacal F., Khadjiev Dj. ∨_- distributive and infinitely ∨_-distributive t-norms on complete lattice. Fuzzy Sets and Systems 2005; 151: 341-352.
  • Kesicioglu M. N., Karaçal F. Mesiar R. Order-equivalent triangular norms. Fuzzy Sets and Systems 2015; 268: 59-71.
  • Klement E. P., Mesiar R. Pap E. Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain, Fuzziness Knowledge-Based Systems 2000; 8: 701-717.
  • Klement E. P., Mesiar R. Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.
  • Klement E. P., Weber S. An integral representation for decomposable measures of measurable functions. Aequationes Math. 1994; 47: 255-262.
  • Kolesárová A. On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 1997; 5: 759-766.
  • Mitsch H. A natural partial order for semigroups. Proceedings of the American Mathematical Society 1986; 97: 384-388.
  • Zhang D. Triangular Norms on Partially Ordered Sets. Fuzzy Sets and Systems 2005; 153: 195-209.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Funda Karacal Bu kişi benim

Mehmet Akif Ince Bu kişi benim

Umit Ertugrul Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 4

Kaynak Göster

APA Karacal, F., Ince, M. A., & Ertugrul, U. (2016). Some properties of K_⪯ set. New Trends in Mathematical Sciences, 4(4), 239-244.
AMA Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. Aralık 2016;4(4):239-244.
Chicago Karacal, Funda, Mehmet Akif Ince, ve Umit Ertugrul. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences 4, sy. 4 (Aralık 2016): 239-44.
EndNote Karacal F, Ince MA, Ertugrul U (01 Aralık 2016) Some properties of K_⪯ set. New Trends in Mathematical Sciences 4 4 239–244.
IEEE F. Karacal, M. A. Ince, ve U. Ertugrul, “Some properties of K_⪯ set”, New Trends in Mathematical Sciences, c. 4, sy. 4, ss. 239–244, 2016.
ISNAD Karacal, Funda vd. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences 4/4 (Aralık 2016), 239-244.
JAMA Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. 2016;4:239–244.
MLA Karacal, Funda vd. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences, c. 4, sy. 4, 2016, ss. 239-44.
Vancouver Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. 2016;4(4):239-44.