Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 4 Sayı: 4, 322 - 328, 31.12.2016

Öz

Kaynakça

  • V. Bala'z ̆, J. C ̆erven'ansky', P. Kostyrko, T. S ̆ala't, I-convergence and I-continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematical 5, 43-50, 2002.
  • N. Bourbaki, General Topology, Part (I) (transl.), Addison- Wesley, Reading (1966).
  • K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.
  • H. Fast, sur la convergence statistique, colloq. Math. 2 (1951), 241-244.
  • H. Halberstem, K. F. Roth, Sequences, Springer, New York, 1993.
  • P. Kostyrko, T.S ̆ala't, W. Wilczynski, I-convergence, Real Analysis, Exch. 26 (2) (2000/2001), 669-685.
  • P. Kostyrko, M. Mac ̆aj, T.S ̆ala't, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
  • B. K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
  • B. K. Lahiri, P. Das, I and I^*-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
  • B. K. Lahiri, P. Das, I and I^*-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
  • M. Mac ̆aj, T.S ̆ala't, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
  • M. Mursaleen and A. Alotaibi, On I–convergence in random 2–normed spaces, Math. Slovaca, 61(6) (2011) 933–940.
  • M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(62)(4) (2010) 359-371.
  • M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012) 49-62.
  • M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010) 603-611.
  • I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, 4th Ed., John Wiley, New York, 1980.
  • T.S ̆ala't, On statistically convergent sequences of real numbers, Mathematical Slovaca, 30 (1980), No. 2, 139-150.
  • T.S ̆ala't, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. of Pure Appl. Math. 17 (2005), 45-54.
  • A.Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(5) (2007), 1477-1484.
  • I. J. Schoenberg, The integrability of certain function and related summability methods, Am. Math. Mon. 66 (1959), 361-375.
  • S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.

I-convergence of filters

Yıl 2016, Cilt: 4 Sayı: 4, 322 - 328, 31.12.2016

Öz

In this paper, we have introduced the idea of I-convergence of filters and studied its various properties. We have proved the necessary and sufficient condition for a filter to be I-convergent.

Kaynakça

  • V. Bala'z ̆, J. C ̆erven'ansky', P. Kostyrko, T. S ̆ala't, I-convergence and I-continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematical 5, 43-50, 2002.
  • N. Bourbaki, General Topology, Part (I) (transl.), Addison- Wesley, Reading (1966).
  • K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.
  • H. Fast, sur la convergence statistique, colloq. Math. 2 (1951), 241-244.
  • H. Halberstem, K. F. Roth, Sequences, Springer, New York, 1993.
  • P. Kostyrko, T.S ̆ala't, W. Wilczynski, I-convergence, Real Analysis, Exch. 26 (2) (2000/2001), 669-685.
  • P. Kostyrko, M. Mac ̆aj, T.S ̆ala't, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
  • B. K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
  • B. K. Lahiri, P. Das, I and I^*-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
  • B. K. Lahiri, P. Das, I and I^*-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
  • M. Mac ̆aj, T.S ̆ala't, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
  • M. Mursaleen and A. Alotaibi, On I–convergence in random 2–normed spaces, Math. Slovaca, 61(6) (2011) 933–940.
  • M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(62)(4) (2010) 359-371.
  • M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012) 49-62.
  • M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010) 603-611.
  • I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, 4th Ed., John Wiley, New York, 1980.
  • T.S ̆ala't, On statistically convergent sequences of real numbers, Mathematical Slovaca, 30 (1980), No. 2, 139-150.
  • T.S ̆ala't, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. of Pure Appl. Math. 17 (2005), 45-54.
  • A.Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(5) (2007), 1477-1484.
  • I. J. Schoenberg, The integrability of certain function and related summability methods, Am. Math. Mon. 66 (1959), 361-375.
  • S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Dalip Singh Jamwal Bu kişi benim

Rohini Jamwal Bu kişi benim

Shivani Sharma Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 4

Kaynak Göster

APA Jamwal, D. S., Jamwal, R., & Sharma, S. (2016). I-convergence of filters. New Trends in Mathematical Sciences, 4(4), 322-328.
AMA Jamwal DS, Jamwal R, Sharma S. I-convergence of filters. New Trends in Mathematical Sciences. Aralık 2016;4(4):322-328.
Chicago Jamwal, Dalip Singh, Rohini Jamwal, ve Shivani Sharma. “I-Convergence of Filters”. New Trends in Mathematical Sciences 4, sy. 4 (Aralık 2016): 322-28.
EndNote Jamwal DS, Jamwal R, Sharma S (01 Aralık 2016) I-convergence of filters. New Trends in Mathematical Sciences 4 4 322–328.
IEEE D. S. Jamwal, R. Jamwal, ve S. Sharma, “I-convergence of filters”, New Trends in Mathematical Sciences, c. 4, sy. 4, ss. 322–328, 2016.
ISNAD Jamwal, Dalip Singh vd. “I-Convergence of Filters”. New Trends in Mathematical Sciences 4/4 (Aralık 2016), 322-328.
JAMA Jamwal DS, Jamwal R, Sharma S. I-convergence of filters. New Trends in Mathematical Sciences. 2016;4:322–328.
MLA Jamwal, Dalip Singh vd. “I-Convergence of Filters”. New Trends in Mathematical Sciences, c. 4, sy. 4, 2016, ss. 322-8.
Vancouver Jamwal DS, Jamwal R, Sharma S. I-convergence of filters. New Trends in Mathematical Sciences. 2016;4(4):322-8.