Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 5 Sayı: 1, 114 - 127, 01.01.2017

Öz

Kaynakça

  • S. M. Hoseini and T. R. Marchant, Solitary wave interaction and evolution for Higher order Hirota equation, Wave Motion. Vol. 44, pp. 92-106, 2006.
  • W. G. Al.Harbi, Numerical Solution of Hirota Equation, M.S.C., KAU, 2009.
  • I. Christie, D. Griffiths, A. Mitchell, and J. M. Sanz-Serna, Product Approximation for non-linear problems in the finite element method, IMA J. N. A. Vol. 1, pp. 253- 266, 1981.
  • J. M. Sanz-Serna and I. Christsie, Petrov- Galerkin methods for nonlinear dispersive waves, J. Comp. Phys. Vol. 39, pp. 94-103, 1981.
  • R.T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equations. IV. Numerical, Korteweg-de Vries equation, J. Comput. Phys. Vol. 55, pp. 231-253, 1984.
  • R. T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equation. IV. Numerical, Modi.ed Korteweg-de Vries equation, J. Comput. Phys. Vol. 77, pp. 540-548, 1988.
  • S. S. Al.Sairy, A Linearly Implicit schemes for the coupled nonlinear Schrödinger Equation, M. S.C., KAU, 2006.
  • R. T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equation. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys. Vol. 55, pp. 203-230, 1984.
  • M.S. Ismail and R.T. Taha, Numerical Simulation of Coupled Nonlinear Schrödinger equation, Math. Comp. Simul. Vol. 56, pp. 547-562, 2001.
  • M. S. Ismail and S. Z. Alamri, Highly Accurate Finite Difference Method for Coupled Nonlinear Schrödinger equation, Int. J. Comp. Math. Vol. 81(3), pp. 303-351, 2004.
  • M. S. Ismail and R. T. Taha, A Linearly Implicit Conservative Scheme for the Coupled Nonlinerar Schrödinger equation, Math. Comp. Simul. Vol. 74, pp. 302-311, 2007.
  • M. S. Ismail, Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method, Math. Comp. Simul. Vol. 78, pp. 532-547, 2008.
  • A. A. Halim S. B. Kshevetskii and S. B. Leble, Numerical integration of a Coupled Korteweg-de Vries System, Comput. And Math Applic. Vol.45, pp.581-591, 2003.
  • A. A. Halim and S. B. Leble, Analytical and numerical solution of coupled KdV-MKdV system, Chaos, Solitons, Fractals. Vol. 19, pp. 99-108, 2004
  • M. S. Ismail, Numerical solution of Coupled Korteweg-de Vries equation by Collocation method, NMPDE. Vol. 25, pp. 275-291, 2009.
  • S. Zhu, A difference scheme for the coupled KdV Equation, Communication in Nonlinear Science and Numerical Simulation Vol. 4 (1), pp. 69-63, 1999.
  • M. S. Ismail, Numerical solution of Complex Modified Korteweg-de Vries equation by collocation method, CNSNS. Vol. 14, pp. 749-759, 2009.
  • M. S. Ismail, Numerical solution of Complex Modified Korteweg-de Vries equation by Petrov-Galerkin method, App. math and comput. Vol. 202, pp. 520- 531, 2008.
  • G. M. Muslu and H. A.Erlbay, A split-Step Fourier Method for the Complex Modified Korteweg-de Vries Equation, Comput. Math Applic.Vol.45, pp. 503-514, 2003.
  • R. T. Taha, Numerical Simulations of complex Modified Korteweg-de Vries equation, Math. comput. Simul. Vol. 37, pp. 461-467, 1994.
  • A. M. Wazwaz, The Tanh and the Sine-Cosine Methods for the Complex Modified KdV Equation and the Generalized KdV Equation, Comput. Math. Applic. Vol. 49, pp. 1101-1112, 2005.
  • T. S. EL-Danaf, K. R. Raslan and Khalid K. Ali,"New Numerical treatment for the Generalized Regularized Long Wave Equation based on finite difference scheme", Int. J. of S. Comp. and Eng. (IJSCE)’, Vol. 4, pp. 16-24, 2014.
  • T. S. EL-Danaf, K. R. Raslan and Khalid K. Ali," collocation method with cubic B-Splines for solving the GRLW equation", Int. J. of Num. Meth. and Appl. Vol. 15 (1), pp. 39-59, 2016.

Finite difference method with different high order approximations for solving complex equation

Yıl 2017, Cilt: 5 Sayı: 1, 114 - 127, 01.01.2017

Öz


Kaynakça

  • S. M. Hoseini and T. R. Marchant, Solitary wave interaction and evolution for Higher order Hirota equation, Wave Motion. Vol. 44, pp. 92-106, 2006.
  • W. G. Al.Harbi, Numerical Solution of Hirota Equation, M.S.C., KAU, 2009.
  • I. Christie, D. Griffiths, A. Mitchell, and J. M. Sanz-Serna, Product Approximation for non-linear problems in the finite element method, IMA J. N. A. Vol. 1, pp. 253- 266, 1981.
  • J. M. Sanz-Serna and I. Christsie, Petrov- Galerkin methods for nonlinear dispersive waves, J. Comp. Phys. Vol. 39, pp. 94-103, 1981.
  • R.T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equations. IV. Numerical, Korteweg-de Vries equation, J. Comput. Phys. Vol. 55, pp. 231-253, 1984.
  • R. T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equation. IV. Numerical, Modi.ed Korteweg-de Vries equation, J. Comput. Phys. Vol. 77, pp. 540-548, 1988.
  • S. S. Al.Sairy, A Linearly Implicit schemes for the coupled nonlinear Schrödinger Equation, M. S.C., KAU, 2006.
  • R. T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equation. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys. Vol. 55, pp. 203-230, 1984.
  • M.S. Ismail and R.T. Taha, Numerical Simulation of Coupled Nonlinear Schrödinger equation, Math. Comp. Simul. Vol. 56, pp. 547-562, 2001.
  • M. S. Ismail and S. Z. Alamri, Highly Accurate Finite Difference Method for Coupled Nonlinear Schrödinger equation, Int. J. Comp. Math. Vol. 81(3), pp. 303-351, 2004.
  • M. S. Ismail and R. T. Taha, A Linearly Implicit Conservative Scheme for the Coupled Nonlinerar Schrödinger equation, Math. Comp. Simul. Vol. 74, pp. 302-311, 2007.
  • M. S. Ismail, Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method, Math. Comp. Simul. Vol. 78, pp. 532-547, 2008.
  • A. A. Halim S. B. Kshevetskii and S. B. Leble, Numerical integration of a Coupled Korteweg-de Vries System, Comput. And Math Applic. Vol.45, pp.581-591, 2003.
  • A. A. Halim and S. B. Leble, Analytical and numerical solution of coupled KdV-MKdV system, Chaos, Solitons, Fractals. Vol. 19, pp. 99-108, 2004
  • M. S. Ismail, Numerical solution of Coupled Korteweg-de Vries equation by Collocation method, NMPDE. Vol. 25, pp. 275-291, 2009.
  • S. Zhu, A difference scheme for the coupled KdV Equation, Communication in Nonlinear Science and Numerical Simulation Vol. 4 (1), pp. 69-63, 1999.
  • M. S. Ismail, Numerical solution of Complex Modified Korteweg-de Vries equation by collocation method, CNSNS. Vol. 14, pp. 749-759, 2009.
  • M. S. Ismail, Numerical solution of Complex Modified Korteweg-de Vries equation by Petrov-Galerkin method, App. math and comput. Vol. 202, pp. 520- 531, 2008.
  • G. M. Muslu and H. A.Erlbay, A split-Step Fourier Method for the Complex Modified Korteweg-de Vries Equation, Comput. Math Applic.Vol.45, pp. 503-514, 2003.
  • R. T. Taha, Numerical Simulations of complex Modified Korteweg-de Vries equation, Math. comput. Simul. Vol. 37, pp. 461-467, 1994.
  • A. M. Wazwaz, The Tanh and the Sine-Cosine Methods for the Complex Modified KdV Equation and the Generalized KdV Equation, Comput. Math. Applic. Vol. 49, pp. 1101-1112, 2005.
  • T. S. EL-Danaf, K. R. Raslan and Khalid K. Ali,"New Numerical treatment for the Generalized Regularized Long Wave Equation based on finite difference scheme", Int. J. of S. Comp. and Eng. (IJSCE)’, Vol. 4, pp. 16-24, 2014.
  • T. S. EL-Danaf, K. R. Raslan and Khalid K. Ali," collocation method with cubic B-Splines for solving the GRLW equation", Int. J. of Num. Meth. and Appl. Vol. 15 (1), pp. 39-59, 2016.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Kamal Raslan Raslan Bu kişi benim

Talaat S. El-danaf Bu kişi benim

Khalid K. Ali Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 1

Kaynak Göster

APA Raslan, K. R., El-danaf, T. S., & Ali, K. K. (2017). Finite difference method with different high order approximations for solving complex equation. New Trends in Mathematical Sciences, 5(1), 114-127.
AMA Raslan KR, El-danaf TS, Ali KK. Finite difference method with different high order approximations for solving complex equation. New Trends in Mathematical Sciences. Ocak 2017;5(1):114-127.
Chicago Raslan, Kamal Raslan, Talaat S. El-danaf, ve Khalid K. Ali. “Finite Difference Method With Different High Order Approximations for Solving Complex Equation”. New Trends in Mathematical Sciences 5, sy. 1 (Ocak 2017): 114-27.
EndNote Raslan KR, El-danaf TS, Ali KK (01 Ocak 2017) Finite difference method with different high order approximations for solving complex equation. New Trends in Mathematical Sciences 5 1 114–127.
IEEE K. R. Raslan, T. S. El-danaf, ve K. K. Ali, “Finite difference method with different high order approximations for solving complex equation”, New Trends in Mathematical Sciences, c. 5, sy. 1, ss. 114–127, 2017.
ISNAD Raslan, Kamal Raslan vd. “Finite Difference Method With Different High Order Approximations for Solving Complex Equation”. New Trends in Mathematical Sciences 5/1 (Ocak 2017), 114-127.
JAMA Raslan KR, El-danaf TS, Ali KK. Finite difference method with different high order approximations for solving complex equation. New Trends in Mathematical Sciences. 2017;5:114–127.
MLA Raslan, Kamal Raslan vd. “Finite Difference Method With Different High Order Approximations for Solving Complex Equation”. New Trends in Mathematical Sciences, c. 5, sy. 1, 2017, ss. 114-27.
Vancouver Raslan KR, El-danaf TS, Ali KK. Finite difference method with different high order approximations for solving complex equation. New Trends in Mathematical Sciences. 2017;5(1):114-27.