Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 5 Sayı: 1, 179 - 189, 01.01.2017

Öz

Kaynakça

  • A. Bansal and R. K. Gupta, On certain new exact solutions of the (2+1)-dimensional Calogero-Degasperis equation via symmetry approach, Int. J. Nonlinear Sci. 13 (2012), no. 4, 475–481.
  • F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform. I, Nuovo Cimento B (11) 32 (1976), no. 2, 201–242.
  • F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform. II, Nuovo Cimento B (11) 39 (1977), no. 1, 1–54.
  • G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations, Springer, New York, 1974.
  • G. Bluman,J.D. Cole The general similarity solution of the heat equation." J. Math Mech 42.
  • G. Bluman et al., Similarity: generalizations, applications and open problems, J. Engrg. Math. 66 (2010), no. 1-3, 1–9.
  • G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences, 81, Springer, New York, 1989.
  • J.-F. Zhang et al., Folded solitary waves and foldons in the (2+1)-dimensional breaking soliton equation, Chaos Solitons Fractals 20 (2004), no. 3, 523–527.
  • L. V. Ovsiannikov, Group Analysis of Differential Equations, translated from the Russian by Y. Chapovsky, translation edited by William F. Ames, Academic Press, New York, 1982.
  • O. Bogoyavlenskij, Restricted Lie point symmetries and reductions for ideal magnetohydrodynamics equilibria, J. Engrg. Math. 66 (2010), no. 1-3, 141–152.
  • P. J. Olver, Applications of Lie Groups to Differential Equations, second edition, Graduate Texts in Mathematics, 107, Springer, New York, 1993.
  • Sachin Kumar and Y.K. Gupta (2014), “Generalized Invariant Solutions for Spherical Symmetric Non-Conformally Flat Fluid Distributions of Embedding Class One." International Journal of Theoretical Physics, 53: 2041-2050.
  • Y.-H. Tian, H.-L. Chen and X.-Q. Liu, Reduction and new explicit solutions of (2+1)-dmensional breaking soliton equation, Commun. Theor. Phys. (Beijing) 45 (2006), no. 1, 33–35.
  • X. Da-Quan, Symmetry reduction and new non-traveling wave solutions of (2+1)-dimensional breaking soliton equation, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 8, 2061–2065.
  • X. Geng and C. Cao, Explicit solutions of the 2+1-dimensional breaking soliton equation, Chaos Solitons Fractals 22 (2004), no. 3, 683–691.
  • Y. K. Gupta, Pratibha and S. Kumar, Some nonconformal accelerating perfect fluid plates of embedding class 1 using similarity transformations, Internat. J. Modern Phys. A 25 (2010), no. 9, 1863–1879.
  • Z.-Y. Yan and H.-Q. Zhang, Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation, Comput. Math. Appl. 44 (2002), no. 10-11, 1439–1444.

Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation

Yıl 2017, Cilt: 5 Sayı: 1, 179 - 189, 01.01.2017

Öz


Kaynakça

  • A. Bansal and R. K. Gupta, On certain new exact solutions of the (2+1)-dimensional Calogero-Degasperis equation via symmetry approach, Int. J. Nonlinear Sci. 13 (2012), no. 4, 475–481.
  • F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform. I, Nuovo Cimento B (11) 32 (1976), no. 2, 201–242.
  • F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform. II, Nuovo Cimento B (11) 39 (1977), no. 1, 1–54.
  • G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations, Springer, New York, 1974.
  • G. Bluman,J.D. Cole The general similarity solution of the heat equation." J. Math Mech 42.
  • G. Bluman et al., Similarity: generalizations, applications and open problems, J. Engrg. Math. 66 (2010), no. 1-3, 1–9.
  • G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences, 81, Springer, New York, 1989.
  • J.-F. Zhang et al., Folded solitary waves and foldons in the (2+1)-dimensional breaking soliton equation, Chaos Solitons Fractals 20 (2004), no. 3, 523–527.
  • L. V. Ovsiannikov, Group Analysis of Differential Equations, translated from the Russian by Y. Chapovsky, translation edited by William F. Ames, Academic Press, New York, 1982.
  • O. Bogoyavlenskij, Restricted Lie point symmetries and reductions for ideal magnetohydrodynamics equilibria, J. Engrg. Math. 66 (2010), no. 1-3, 141–152.
  • P. J. Olver, Applications of Lie Groups to Differential Equations, second edition, Graduate Texts in Mathematics, 107, Springer, New York, 1993.
  • Sachin Kumar and Y.K. Gupta (2014), “Generalized Invariant Solutions for Spherical Symmetric Non-Conformally Flat Fluid Distributions of Embedding Class One." International Journal of Theoretical Physics, 53: 2041-2050.
  • Y.-H. Tian, H.-L. Chen and X.-Q. Liu, Reduction and new explicit solutions of (2+1)-dmensional breaking soliton equation, Commun. Theor. Phys. (Beijing) 45 (2006), no. 1, 33–35.
  • X. Da-Quan, Symmetry reduction and new non-traveling wave solutions of (2+1)-dimensional breaking soliton equation, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 8, 2061–2065.
  • X. Geng and C. Cao, Explicit solutions of the 2+1-dimensional breaking soliton equation, Chaos Solitons Fractals 22 (2004), no. 3, 683–691.
  • Y. K. Gupta, Pratibha and S. Kumar, Some nonconformal accelerating perfect fluid plates of embedding class 1 using similarity transformations, Internat. J. Modern Phys. A 25 (2010), no. 9, 1863–1879.
  • Z.-Y. Yan and H.-Q. Zhang, Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation, Comput. Math. Appl. 44 (2002), no. 10-11, 1439–1444.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Vishakha Jadaun Bu kişi benim

Sachin Kumar Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 1

Kaynak Göster

APA Jadaun, V., & Kumar, S. (2017). Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation. New Trends in Mathematical Sciences, 5(1), 179-189.
AMA Jadaun V, Kumar S. Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation. New Trends in Mathematical Sciences. Ocak 2017;5(1):179-189.
Chicago Jadaun, Vishakha, ve Sachin Kumar. “Lie Point Symmetries and Invariant Solutions of (2+1)- Dimensional Calogero Degasperis Equation”. New Trends in Mathematical Sciences 5, sy. 1 (Ocak 2017): 179-89.
EndNote Jadaun V, Kumar S (01 Ocak 2017) Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation. New Trends in Mathematical Sciences 5 1 179–189.
IEEE V. Jadaun ve S. Kumar, “Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation”, New Trends in Mathematical Sciences, c. 5, sy. 1, ss. 179–189, 2017.
ISNAD Jadaun, Vishakha - Kumar, Sachin. “Lie Point Symmetries and Invariant Solutions of (2+1)- Dimensional Calogero Degasperis Equation”. New Trends in Mathematical Sciences 5/1 (Ocak 2017), 179-189.
JAMA Jadaun V, Kumar S. Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation. New Trends in Mathematical Sciences. 2017;5:179–189.
MLA Jadaun, Vishakha ve Sachin Kumar. “Lie Point Symmetries and Invariant Solutions of (2+1)- Dimensional Calogero Degasperis Equation”. New Trends in Mathematical Sciences, c. 5, sy. 1, 2017, ss. 179-8.
Vancouver Jadaun V, Kumar S. Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation. New Trends in Mathematical Sciences. 2017;5(1):179-8.