A Note on genus problem and conjugation of the normalizer
Yıl 2017,
Cilt: 5 Sayı: 4, 117 - 122, 01.10.2017
Bahadır Ozgur Guler
Serkan Kader
Öz
![]()
Kaynakça
- M. Akbaş, D. Singerman, The Signature of the normalizer of Γ_0 (N), London Math. Soc. Lecture Note Series , 165, CUP, (1992), 77-86.
- H. Helling, On the commensurability class of rational modular group, J. London Math. Soc., 2, (1970), 67-72.
- M. L. Lang, The Signature of Γ_0^+ (N), Journal of Algebra , 241, (2001), 146-185.
- C. Machlaclan, Groups of units of zero ternary quadratic forms, Proceeding of the Royal Society of Edinburg, 88A, (1981), 141-157.
- G. Shimura, Inroduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, 1971.
Yıl 2017,
Cilt: 5 Sayı: 4, 117 - 122, 01.10.2017
Bahadır Ozgur Guler
Serkan Kader
Kaynakça
- M. Akbaş, D. Singerman, The Signature of the normalizer of Γ_0 (N), London Math. Soc. Lecture Note Series , 165, CUP, (1992), 77-86.
- H. Helling, On the commensurability class of rational modular group, J. London Math. Soc., 2, (1970), 67-72.
- M. L. Lang, The Signature of Γ_0^+ (N), Journal of Algebra , 241, (2001), 146-185.
- C. Machlaclan, Groups of units of zero ternary quadratic forms, Proceeding of the Royal Society of Edinburg, 88A, (1981), 141-157.
- G. Shimura, Inroduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, 1971.
Toplam 5 adet kaynakça vardır.