Araştırma Makalesi
BibTex RIS Kaynak Göster

Major volatile compounds in the essential oil of the aromatic culinary herb Pelargonium crispum (Geraniaceae)

Yıl 2018, Cilt: 5 Sayı: 1, 23 - 28, 23.03.2018

Öz














The aromatic culinary herb Pelargonium crispum is used as a
condiment across the world to confer a lemony aroma to food. The phytochemistry
of one cultivar of unknown origin has been tentatively described in earlier
studies, with only the dominant volatile components assigned as neral and
geranial and with chrysin as the major flavone. In the current study a more
detailed chemistry of the essential oils is given, and the major flavanone in
the leaves is assigned as (2
S)-(-)-pinocembrin, a dihydro derivative of chrysin.
The predominance of neral and geranial is confirmed and a number of related
oxide and phenylpropanoid ester derivatives are assigned. A major outcome is
the realization that the wild specimens sampled by us displays different
chemistry to the chemotype previously described





Kaynakça

  • Adams, R. P. (2007). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Carol Stream, Illinois: Allured Publishing Corporation.
  • Akhila, A. (2009). Essential oil-bearing grasses: The genus Cymbopogon. Boca Raton, Florida: CRC Press.
  • Blanc, M.-C., Bradesi, P., & Casanova, J. (2005). Spectral assignments and reference data: Enantiomeric differentiation of acyclic terpenes by 13C NMR spectroscopy using a chiral lanthanide shift reagent. Magnetic Resonance in Chemistry 43, 176-179.
  • Kelm, M. A., Nair, M. G., & Schutzki, R. A. (1997). Mosquitocidal compounds from Magnolia salicifolia. International Journal of Pharmacognosy 35(2), 84-90.
  • Kuwahara, Y., & Suzuki, H. (1983). Pheromone study of acarid mites XI. Function of mite body as geometrical isomerization and reduction of citral (the alarm pheromone). Applied Entomology and Zoology, 18(1), 30-39.
  • Lalli, J., Viljoen, A.M., Baser, K.H.C., Demirci, B., Özek, T. 2006. The essential oil composition and chemotaxonomical appraisal of South African Pelargoniums (Geraniaceae). Journal of Essential Oil Research, 18: 89–105.
  • Lan, X., Wang, W., Li, Q., & Wang. J. (2016). The natural flavonoid pinocembrin: Molecular targets and potential therapeutic applications. Molecular Neurobiology, 53, 1794-1801.
  • Lim, T.K. (2014). Edible medicinal and non-medicinal plants: Volume 8, Flowers (pp. 72-76). Dordrecht: Springer Science + Business Media.
  • Lis-Balchin, M., Buchbauer, G., Ribisch, K., & Wenger, M.-T. (1998). Comparative antibacterial effects of novel Pelargonium essential oils and solvent extracts. Letters in Applied Microbiology, 27, 135-141.
  • Liu, R., Li, J.-Z., Song, J.-K., Zhou, D., Huang, C., Bai, X.-Y., Xie, T., Zhang, X., Li, Y.-J., Wu, C.-X., Zhang, L., Li, L., Zhang, T.- T., & Du, G.-H. (2014). Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiology of Aging, 35(6), 1275-1285.
  • Lungkaphin, A., Pongchaidecha, A., Palee, S., Arjinajarn, P., Pompimon, W., & Chattipakorn, N. (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats with acute myocardial ischemia/reperfusion. Applied Physiology Nutrition and Metabolism, 40(1), 1-7.
  • Modak, T., & Mukhopadhaya, A. (2011). Effects of citral, a naturally occurring antiadipogenic molecule, on an energy- intense diet model of obesity. Indian Journal of Pharmacology, 43(3), 300-305.
  • Napal, G. N. D., Carpinella, M. C., & Palacios, S. M. (2009). Antifeedant activity of ethanolic extract from Flourensia oolepsis and isolation of pinocembrin as its active principle compound. Bioresource Technology, 100, 3669-3673.
  • Oh, Y. S. (2016). Bioactive compounds and their neuroprotective effects in diabetic complications. Nutrients, 8, 472- 492.
  • Ohtsuru, M., Teraoka, M., Tori, K., & Takeda, K. (1967). Proton magnetic resonance studies of citral a and b. Journal of the Chemical Society B: Physical Organic. 0, 1033-1035.
  • Onawunmi, G.O. (1989). Evaluation of the antimicrobial activity of citral. Letters in Applied Microbiology, 9, 105-108.
  • Rasul, A., Millimouno, F. M., Eltayb, W. A., Ali, M., Li, J., & Li, X., (2013). Pinocembrin: A novel natural compound with versatile pharmacological biological activities. BioMedical Research International, 379850, 1-9.
  • Stafford, H. A. (1961). Distribution of tartaric acid in the Geraniaceae. American Journal of Botany, 48, 699-701 Tanaka, H., Ichino, K., & Ito, K. (1985). A novel flavanone, linderatone, from Lindera umbellata. Chemical and Pharmaceutical Bulletin, 33(6), 2602-2604.
  • Williams, C. A., Harborne, J. B., Newman, M., Greenham, J., & Eagles, J. (1997). Chrysin and other leaf exudates flavonoids in the genus Pelargonium. Phytochemistry, 46(8), 1349-1353.
  • Zhao, Y., Tian, W., & Peng, W. (2014). Anti-proliferation and insulin resistance alleviation of hepatocellular carcinoma cells HepG2 in vitro by Chinese propolis. Journal of Food and Nutrition Research, 2(5), 228-235.
Yıl 2018, Cilt: 5 Sayı: 1, 23 - 28, 23.03.2018

Öz

Kaynakça

  • Adams, R. P. (2007). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Carol Stream, Illinois: Allured Publishing Corporation.
  • Akhila, A. (2009). Essential oil-bearing grasses: The genus Cymbopogon. Boca Raton, Florida: CRC Press.
  • Blanc, M.-C., Bradesi, P., & Casanova, J. (2005). Spectral assignments and reference data: Enantiomeric differentiation of acyclic terpenes by 13C NMR spectroscopy using a chiral lanthanide shift reagent. Magnetic Resonance in Chemistry 43, 176-179.
  • Kelm, M. A., Nair, M. G., & Schutzki, R. A. (1997). Mosquitocidal compounds from Magnolia salicifolia. International Journal of Pharmacognosy 35(2), 84-90.
  • Kuwahara, Y., & Suzuki, H. (1983). Pheromone study of acarid mites XI. Function of mite body as geometrical isomerization and reduction of citral (the alarm pheromone). Applied Entomology and Zoology, 18(1), 30-39.
  • Lalli, J., Viljoen, A.M., Baser, K.H.C., Demirci, B., Özek, T. 2006. The essential oil composition and chemotaxonomical appraisal of South African Pelargoniums (Geraniaceae). Journal of Essential Oil Research, 18: 89–105.
  • Lan, X., Wang, W., Li, Q., & Wang. J. (2016). The natural flavonoid pinocembrin: Molecular targets and potential therapeutic applications. Molecular Neurobiology, 53, 1794-1801.
  • Lim, T.K. (2014). Edible medicinal and non-medicinal plants: Volume 8, Flowers (pp. 72-76). Dordrecht: Springer Science + Business Media.
  • Lis-Balchin, M., Buchbauer, G., Ribisch, K., & Wenger, M.-T. (1998). Comparative antibacterial effects of novel Pelargonium essential oils and solvent extracts. Letters in Applied Microbiology, 27, 135-141.
  • Liu, R., Li, J.-Z., Song, J.-K., Zhou, D., Huang, C., Bai, X.-Y., Xie, T., Zhang, X., Li, Y.-J., Wu, C.-X., Zhang, L., Li, L., Zhang, T.- T., & Du, G.-H. (2014). Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiology of Aging, 35(6), 1275-1285.
  • Lungkaphin, A., Pongchaidecha, A., Palee, S., Arjinajarn, P., Pompimon, W., & Chattipakorn, N. (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats with acute myocardial ischemia/reperfusion. Applied Physiology Nutrition and Metabolism, 40(1), 1-7.
  • Modak, T., & Mukhopadhaya, A. (2011). Effects of citral, a naturally occurring antiadipogenic molecule, on an energy- intense diet model of obesity. Indian Journal of Pharmacology, 43(3), 300-305.
  • Napal, G. N. D., Carpinella, M. C., & Palacios, S. M. (2009). Antifeedant activity of ethanolic extract from Flourensia oolepsis and isolation of pinocembrin as its active principle compound. Bioresource Technology, 100, 3669-3673.
  • Oh, Y. S. (2016). Bioactive compounds and their neuroprotective effects in diabetic complications. Nutrients, 8, 472- 492.
  • Ohtsuru, M., Teraoka, M., Tori, K., & Takeda, K. (1967). Proton magnetic resonance studies of citral a and b. Journal of the Chemical Society B: Physical Organic. 0, 1033-1035.
  • Onawunmi, G.O. (1989). Evaluation of the antimicrobial activity of citral. Letters in Applied Microbiology, 9, 105-108.
  • Rasul, A., Millimouno, F. M., Eltayb, W. A., Ali, M., Li, J., & Li, X., (2013). Pinocembrin: A novel natural compound with versatile pharmacological biological activities. BioMedical Research International, 379850, 1-9.
  • Stafford, H. A. (1961). Distribution of tartaric acid in the Geraniaceae. American Journal of Botany, 48, 699-701 Tanaka, H., Ichino, K., & Ito, K. (1985). A novel flavanone, linderatone, from Lindera umbellata. Chemical and Pharmaceutical Bulletin, 33(6), 2602-2604.
  • Williams, C. A., Harborne, J. B., Newman, M., Greenham, J., & Eagles, J. (1997). Chrysin and other leaf exudates flavonoids in the genus Pelargonium. Phytochemistry, 46(8), 1349-1353.
  • Zhao, Y., Tian, W., & Peng, W. (2014). Anti-proliferation and insulin resistance alleviation of hepatocellular carcinoma cells HepG2 in vitro by Chinese propolis. Journal of Food and Nutrition Research, 2(5), 228-235.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Articles
Yazarlar

Nicholas J. Sadgrove

Ben-erik Van Wyk Bu kişi benim

Yayımlanma Tarihi 23 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 1

Kaynak Göster

APA Sadgrove, N. J., & Van Wyk, B.-e. (2018). Major volatile compounds in the essential oil of the aromatic culinary herb Pelargonium crispum (Geraniaceae). Natural Volatiles and Essential Oils, 5(1), 23-28.