Araştırma Makalesi
BibTex RIS Kaynak Göster

APPROXİMATE SOLUTIONS OF NONLINEAR OSCİLLATORS

Yıl 2017, Cilt: 12 Sayı: 1, 1 - 7, 02.01.2017

Öz



The
modified homotopy perturbation method(MHPM) is used for solving 
the differential equation of pendulum model. Comparisons are made between the standard HPM and the
MHPM.
The
results show that this method is 
effective and can obtain high
accuracy solutions by only one iteration.




Kaynakça

  • 1. He, J.H., (1999). Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng., 178, 3-4 257–262. http://dx.doi.org/10.1016/S0045-7825(99)00018-3
  • 2. He, J.H., (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computation., 135, 1, 73–79. http://dx.doi.org/10.1016/S0096-3003(01)00312-5
  • 3. Babolian, E., Saeidian, J. and Azizi, A., (2009). Application of Homotopy Perturbation Method to Some Nonlinear Problems. Applied Mathematical Sciences, 3, 45, 2215–2226. http://www.m-hikari.com/ams/ams-password-2009/ams-password45-48-2009/saeidianAMS45-48-2009.pdf

APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS

Yıl 2017, Cilt: 12 Sayı: 1, 1 - 7, 02.01.2017

Öz



The modified homotopy perturbation method (MHPM)
is used for solving the differential equation of pendulum model. Comparisons
are made between the standard HPM and the MHPM. The results show that this
method is effective and can obtain high accuracy solutions by only one iteration. 



Kaynakça

  • 1. He, J.H., (1999). Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng., 178, 3-4 257–262. http://dx.doi.org/10.1016/S0045-7825(99)00018-3
  • 2. He, J.H., (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computation., 135, 1, 73–79. http://dx.doi.org/10.1016/S0096-3003(01)00312-5
  • 3. Babolian, E., Saeidian, J. and Azizi, A., (2009). Application of Homotopy Perturbation Method to Some Nonlinear Problems. Applied Mathematical Sciences, 3, 45, 2215–2226. http://www.m-hikari.com/ams/ams-password-2009/ams-password45-48-2009/saeidianAMS45-48-2009.pdf
Toplam 3 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Fizik
Yazarlar

ŞERİFE Faydaoğlu

Yayımlanma Tarihi 2 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 12 Sayı: 1

Kaynak Göster

APA Faydaoğlu, Ş. (2017). APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS. Physical Sciences, 12(1), 1-7. https://doi.org/NWSA.2017.12.1.3A0078
AMA Faydaoğlu Ş. APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS. Physical Sciences. Ocak 2017;12(1):1-7. doi:NWSA.2017.12.1.3A0078
Chicago Faydaoğlu, ŞERİFE. “APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS”. Physical Sciences 12, sy. 1 (Ocak 2017): 1-7. https://doi.org/NWSA.2017.12.1.3A0078.
EndNote Faydaoğlu Ş (01 Ocak 2017) APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS. Physical Sciences 12 1 1–7.
IEEE Ş. Faydaoğlu, “APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS”, Physical Sciences, c. 12, sy. 1, ss. 1–7, 2017, doi: NWSA.2017.12.1.3A0078.
ISNAD Faydaoğlu, ŞERİFE. “APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS”. Physical Sciences 12/1 (Ocak 2017), 1-7. https://doi.org/NWSA.2017.12.1.3A0078.
JAMA Faydaoğlu Ş. APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS. Physical Sciences. 2017;12:1–7.
MLA Faydaoğlu, ŞERİFE. “APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS”. Physical Sciences, c. 12, sy. 1, 2017, ss. 1-7, doi:NWSA.2017.12.1.3A0078.
Vancouver Faydaoğlu Ş. APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS. Physical Sciences. 2017;12(1):1-7.