BibTex RIS Kaynak Göster

USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA

Yıl 2014, Cilt: 9 Sayı: 4, 105 - 117, 10.10.2014

Öz

Regional differences can be seen in the structures of all countries and may cause several social and economic problems.  Most of the world countries have been obliged to struggle with this imbalance and put forward different solutions for sustainable development. Regional Development Agencies (RDAs) is support regional firms which play important roles in development. However, due to the lack of an effective evaluation mechanism, the necessity of the supports and value addition to the region, have not yet been clearly demonstrated. Therefore, the selection of projects which will add more value to regions and bear high multiplying effects has great importance. In this study, the supports RDAs providing and the evaluating criteria of these support mechanisms are discussed. Relative weights of criteria are calculated by using fuzzy AHP and projects are ranked by using fuzzy TOPSIS. In this study, an alternative method is presented in the selection of projects.

Kaynakça

  • Amile,M., Sedaghat, M.and Poorhossein M. (2013), Performance Evaluation of Banks using Fuzzy AHP and TOPSIS, Case study: State-owned Banks, Partially Private and Private Banks in Iran, Caspian Journal of Applied Sciences Research, 2(3), pp. 128-138
  • Amiri, A. P., Amiri, M. P., and Amiri, M. P. (2009). The investigation and explanation of local model of effective internal factors on stock price index in Tehran stock exchange with fuzzy approach. Journal of Applied Science, 9(2), 258–267. DOI: 10.3923/jas.2009.258.267.
  • Aydogan, E. K., (2011) 2011 Performance measurement model for Turkish aviation farms using the rough-AHP and TOPSIS methods under fuzzy environment, Expert Systems with Applications, 38, pp. 3992–3998. DOI: 10.1016/j.eswa.2010.09.060
  • Ballı S.and Korukoglu, S., (2009), Operating System Selection Using Fuzzy AHP And TOPSIS Methods Mathematical and Computational Applications, Vol. 14, No. 2, pp. 119-130
  • Bottani, E., and Rizzi, A. (2006). A fuzzy TOPSIS methodology to support outsourcing of logistics services. Supply Chain Management: An International Journal, 11(4), pp. 294-308. DOI: 10.1108/13598540610671743.
  • Büyüközkan, G., Feyzioğlu, O., and Nebol, E. (2008). Selection of the strategic alliance partner in logistics value chain. International Journal of Production Economics, 113(1), pp. 148-158. DOI: 10.1016/j.ijpe.2007.01.016.
  • Cakir, O., and Canbolat, M. S. (2008). A web-based decision support system for multicriteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35, pp. 1367–1378. DOI: 10.1016/j.eswa.2007.08.041.
  • Chaghooshi, A. J., Fathi, M. R., and Kashef, M. (2012). Integration of fuzzy Shannon’s entropy with fuzzy TOPSIS for industrial robotic system section. Journal of Industrial Engineering and Management, 5(1), pp. 102-114. DOI: 10.3926/jiem.397.
  • Chang, D. Y., (1992), Extent Analysis and Synthetic Decision, Optimization Techniques and Applications, World Scientific, Singapore, 1, 352
  • Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), pp. 1-9. DOI: 10.1016/S0165-0114(97)00377-1
  • Chen, C.-T. (2001). A fuzzy approach to select the location of the distribution center. Fuzzy Sets and Systems, 118(1), pp. 65-73. DOI: 10.1016/S0165-0114(98)00459-X.
  • Dagdeviren, M., Yavuz, S.,and Kılınç, N., Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems with Applications, 36 (2009), pp. 8143–8151.DOI: 10.1016/j.eswa.2008.10.016
  • Ertugrul, E.,and Karakasoglu, N., (2008), Comparison of fuzzy AHP and fuzzy TOPSIS methods for Facility Location Selection, International Journal Of Advanced Manufacturing Technology, 39, pp. 783–795. DOI: 10.1007/s00170-007-1249-8
  • Kahraman, C. (ed.)Fuzzy Applications in Industrial Engineering (Studies in Fuzziness and Soft Computing (Book 201), Springer, ISBN 978-3-540-33517-7
  • Kahraman, C. (2008). Fuzzy multi-criteria decision making: theory and applications with recent developments (Vol. 16): Springer. ISBN: 978-0-387-76813-7
  • Kahraman, C., Ates, N. Y., Çevik, S., Gülbay, M., and Erdogan, S. A. (2007). Hierarchical fuzzy TOPSIS model for selection among logistics information technologies. Journal of Enterprise Information Management, 20(2), pp. 143-168. DOI: 10.1108/17410390710725742.
  • Kahraman, C., Cebeci, U., and Ulukan, Z. (2003). Multi-criteria supplier selection using fuzzy AHP. Logistics Information Management, 16(6), pp. 382-394. DOI: 10.1108/09576050310503367
  • Mahmoodzadeh, S., Shahrabi, J., Pariazar, M., and Zaeri, M. (2007). Project selection by using fuzzy AHP and TOPSIS technique. International Journal of Human and social sciences, 1(3), pp. 135-140.
  • Paksoy, T., Pehlivan, N. Y., and Kahraman, C. (2012). Organizational strategy development in distribution channel management using fuzzy AHP and hierarchical fuzzy TOPSIS. Expert Systems with Applications, 39(3), pp. 2822-2841. DOI: 10.1016/j.eswa.2011.08.142
  • Pirim, L., Using Fuzzy AHP and Fuzzy TOPSIS Methods for the Analysis of Development Agencies Evaluation Criteria, Master Thesis, Inonu University Social Sciences Institute, 2014
  • Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), pp. 9-26.
  • Wang, T.-C., and Chang, T.-H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), pp. 870-880.

-

Yıl 2014, Cilt: 9 Sayı: 4, 105 - 117, 10.10.2014

Öz

Bölgesel gelişmişlik farklılıkları, tüm ülkelerin yapısında görülmekte ve sosyo-ekonomik birçok sorunun çıkmasına sebep olmaktadır. Dünyadaki ülkelerin çoğu bu dengesizliklerle mücadele etmek zorunda kalmış ve sürdürülebilir bir kalkınma için farklı çözümler ortaya koymuşlardır. Bölgesel Kalkınma Ajansları(BKA) gelişmede önemli rol oynayan bölgesel firmaları desteklemektedir. Ancak etkin bir değerlendirme mekanizmasının olmaması nedeniyle, sağlanan desteklerin ne kadar yerinde olduğu, bölgeye ne kadar katma değer sağlayacağı net olarak ortaya konulabilmiş değildir. Bu nedenle; bölgeye daha fazla katma değer sağlayacak ve çarpan etkisi yüksek projelerin seçilmesi büyük önem arz etmektedir. Bu çalışmada, BKA’ların sağladıkları destekler ve bu destek mekanizmalarının değerlendirme kriterleri ele alınmıştır. Değerlendirme kriterlerinin göreli ağırlıklarını belirlemek için bulanık AHP, projeleri sıralamada bulanık TOPSIS kullanılmıştır. Çalışmada, proje seçiminde alternatif bir metot gösterilmiştir.

Kaynakça

  • Amile,M., Sedaghat, M.and Poorhossein M. (2013), Performance Evaluation of Banks using Fuzzy AHP and TOPSIS, Case study: State-owned Banks, Partially Private and Private Banks in Iran, Caspian Journal of Applied Sciences Research, 2(3), pp. 128-138
  • Amiri, A. P., Amiri, M. P., and Amiri, M. P. (2009). The investigation and explanation of local model of effective internal factors on stock price index in Tehran stock exchange with fuzzy approach. Journal of Applied Science, 9(2), 258–267. DOI: 10.3923/jas.2009.258.267.
  • Aydogan, E. K., (2011) 2011 Performance measurement model for Turkish aviation farms using the rough-AHP and TOPSIS methods under fuzzy environment, Expert Systems with Applications, 38, pp. 3992–3998. DOI: 10.1016/j.eswa.2010.09.060
  • Ballı S.and Korukoglu, S., (2009), Operating System Selection Using Fuzzy AHP And TOPSIS Methods Mathematical and Computational Applications, Vol. 14, No. 2, pp. 119-130
  • Bottani, E., and Rizzi, A. (2006). A fuzzy TOPSIS methodology to support outsourcing of logistics services. Supply Chain Management: An International Journal, 11(4), pp. 294-308. DOI: 10.1108/13598540610671743.
  • Büyüközkan, G., Feyzioğlu, O., and Nebol, E. (2008). Selection of the strategic alliance partner in logistics value chain. International Journal of Production Economics, 113(1), pp. 148-158. DOI: 10.1016/j.ijpe.2007.01.016.
  • Cakir, O., and Canbolat, M. S. (2008). A web-based decision support system for multicriteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35, pp. 1367–1378. DOI: 10.1016/j.eswa.2007.08.041.
  • Chaghooshi, A. J., Fathi, M. R., and Kashef, M. (2012). Integration of fuzzy Shannon’s entropy with fuzzy TOPSIS for industrial robotic system section. Journal of Industrial Engineering and Management, 5(1), pp. 102-114. DOI: 10.3926/jiem.397.
  • Chang, D. Y., (1992), Extent Analysis and Synthetic Decision, Optimization Techniques and Applications, World Scientific, Singapore, 1, 352
  • Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), pp. 1-9. DOI: 10.1016/S0165-0114(97)00377-1
  • Chen, C.-T. (2001). A fuzzy approach to select the location of the distribution center. Fuzzy Sets and Systems, 118(1), pp. 65-73. DOI: 10.1016/S0165-0114(98)00459-X.
  • Dagdeviren, M., Yavuz, S.,and Kılınç, N., Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems with Applications, 36 (2009), pp. 8143–8151.DOI: 10.1016/j.eswa.2008.10.016
  • Ertugrul, E.,and Karakasoglu, N., (2008), Comparison of fuzzy AHP and fuzzy TOPSIS methods for Facility Location Selection, International Journal Of Advanced Manufacturing Technology, 39, pp. 783–795. DOI: 10.1007/s00170-007-1249-8
  • Kahraman, C. (ed.)Fuzzy Applications in Industrial Engineering (Studies in Fuzziness and Soft Computing (Book 201), Springer, ISBN 978-3-540-33517-7
  • Kahraman, C. (2008). Fuzzy multi-criteria decision making: theory and applications with recent developments (Vol. 16): Springer. ISBN: 978-0-387-76813-7
  • Kahraman, C., Ates, N. Y., Çevik, S., Gülbay, M., and Erdogan, S. A. (2007). Hierarchical fuzzy TOPSIS model for selection among logistics information technologies. Journal of Enterprise Information Management, 20(2), pp. 143-168. DOI: 10.1108/17410390710725742.
  • Kahraman, C., Cebeci, U., and Ulukan, Z. (2003). Multi-criteria supplier selection using fuzzy AHP. Logistics Information Management, 16(6), pp. 382-394. DOI: 10.1108/09576050310503367
  • Mahmoodzadeh, S., Shahrabi, J., Pariazar, M., and Zaeri, M. (2007). Project selection by using fuzzy AHP and TOPSIS technique. International Journal of Human and social sciences, 1(3), pp. 135-140.
  • Paksoy, T., Pehlivan, N. Y., and Kahraman, C. (2012). Organizational strategy development in distribution channel management using fuzzy AHP and hierarchical fuzzy TOPSIS. Expert Systems with Applications, 39(3), pp. 2822-2841. DOI: 10.1016/j.eswa.2011.08.142
  • Pirim, L., Using Fuzzy AHP and Fuzzy TOPSIS Methods for the Analysis of Development Agencies Evaluation Criteria, Master Thesis, Inonu University Social Sciences Institute, 2014
  • Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), pp. 9-26.
  • Wang, T.-C., and Chang, T.-H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), pp. 870-880.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Ekonometri
Yazarlar

Hasan Söyler

Lokman Pirim Bu kişi benim

Yayımlanma Tarihi 10 Ekim 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 9 Sayı: 4

Kaynak Göster

APA Söyler, H., & Pirim, L. (2014). USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA. Social Sciences, 9(4), 105-117. https://doi.org/10.12739/NWSA.2014.9.4.3C0124
AMA Söyler H, Pirim L. USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA. Social Sciences. Ekim 2014;9(4):105-117. doi:10.12739/NWSA.2014.9.4.3C0124
Chicago Söyler, Hasan, ve Lokman Pirim. “USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA”. Social Sciences 9, sy. 4 (Ekim 2014): 105-17. https://doi.org/10.12739/NWSA.2014.9.4.3C0124.
EndNote Söyler H, Pirim L (01 Ekim 2014) USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA. Social Sciences 9 4 105–117.
IEEE H. Söyler ve L. Pirim, “USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA”, Social Sciences, c. 9, sy. 4, ss. 105–117, 2014, doi: 10.12739/NWSA.2014.9.4.3C0124.
ISNAD Söyler, Hasan - Pirim, Lokman. “USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA”. Social Sciences 9/4 (Ekim 2014), 105-117. https://doi.org/10.12739/NWSA.2014.9.4.3C0124.
JAMA Söyler H, Pirim L. USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA. Social Sciences. 2014;9:105–117.
MLA Söyler, Hasan ve Lokman Pirim. “USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA”. Social Sciences, c. 9, sy. 4, 2014, ss. 105-17, doi:10.12739/NWSA.2014.9.4.3C0124.
Vancouver Söyler H, Pirim L. USING FUZZY AHP AND FUZZY TOPSIS METHODS FOR THE ANALYSIS OF DEVELOPMENT AGENCIES PROJECT EVALUATION CRITERIA. Social Sciences. 2014;9(4):105-17.