BibTex RIS Kaynak Göster

PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ

Yıl 2016, Cilt: 11 Sayı: 4, 171 - 184, 13.10.2016

Öz

Bu çalışmada, düşük karbonlu AISI 1020 çeliğinin yüzeyi Fe-Cr-W-B-C kompozit kaplamasıyla plazma transfer ark (PTA) kaynak yöntemi kullanılarak kaplanmıştır. Kaplama tozu olarak ağırlıkça yüzde 80FeCrC-10FeW-10FeB ve 60FeCrC-20FeW-20FeB karışımları kullanılmıştır. Kaplamalar iki farklı ilerleme hızı (0.15 m/dk, 0.1 m/dk) ve akım değerinde (120 A, 160 A) gerçekleştirilmiştir. Kaplama işleminden sonra kaplama tabaları OM, SEM ve EDS ile incelenmiştir. Kaplanan numuneler mikrosertlik testine ve pin-on-disk aşınma testine tabi tutulmuştur. Fe-Cr-W-B-C ile AISI 1020 çeliğinin yüzeyinin PTA yöntemi kullanılarak sorunsuz şekilde kaplanabildiği tespit edilmiştir. Maksimum mikrosertlik değeri 1668 Hv0.2 olarak ölçülmüştür. Fe-Cr-W-B-C ile yüzeyi kaplanmış AISI 1020’ nin aşınma direncinin ve sertliğinin kaplanmamış AISI 1020’ ye oranla daha yüksek olduğu tespit edilmiştir.    

Kaynakça

  • Cheng, J.B., Xu, B.S., Liang, X.B., and Wu, Y.X., (2008). Microstructure and Mechanical Characteristics of Iron-Based Coating Prepared by Plasma Transferred Arc Cladding Process. Materials Science and Engineering: A. Cilt:492, Sayı:1, ss:407-412.
  • Veinthal, R., Sergejev, F., Zikin, A.,Tarbe, R., and Hornung, J., (2013). Abrasive Impact Wear and Surface Fatigue Wear Behaviour of Fe–Cr–C PTA Overlays. Wear, Cilt:301, Sayı:1, ss:102-108.
  • Liu, Y.F., Xia, Z.Y., Han, J.M., Zhang, G.L.,and Yang, S.Z., (2006). Microstructure and Wear Behavior of (Cr, Fe)7C3 Reinforced Composite Coating Produced by Plasma Transferred Arc Weld-surfacing Process. Surface and Coatings Technology, Cilt:201, Sayı:3, ss:863-867.
  • Hu, G., Meng, H., and Liu, J., (2014). Microstructure and Corrosion Resistance of Induction Melted Fe-Based Alloy Coating. Surface And Coatings Technology, Cilt:251, ss:300-306.
  • Hou, Q.Y., Gao, J.S., and Zhou, F., (2005). Microstructure and Wear Characteristics of Cobalt-Based Alloy Deposited by Plasma Transferred Arc Weld Surfacing. Surface and Coatings Technology, Cilt:194, Sayı:2, ss:238-243.
  • Bourithis, E., Tazedakis, A., and Papadimitriou, G., (2002). A Study on The Surface Treatment of “Calmax” Tool Steel by a Plasma Transferred Arc (PTA) Process. Journal of Materials Processing Technology, Cilt:128, Sayı:1, ss:169-177.
  • Gür, A.K., (2013). Investigating the Wear Behaviour of Fecrc/B4c Powder Alloys Coating Produced by Plasma Transferred Arc Weld Surfacing Using the Taguchi Method. Materials Testing, Cilt:55, Sayı:6, ss:462-467.
  • Zikin, A., Hussainova, I., Katsich, C., Badisch, E., and Tomastik, C., (2012). Advanced Chromium Carbide-Based Hardfacings. Surface and Coatings Technology, Cilt:206, Sayı:19, ss:4270-4278.
  • Yuan, Y. and Li, Z., (2014). Effects of Rod Carbide Size, Content, Loading and Sliding Distance on the Friction and Wear Behaviors of (Cr, Fe)7C3-Reinforced α-Fe Based Composite Coating Produced via PTA Welding Process. Surface and Coatings Technology, Cilt:248, ss:9-22.
  • Neville, A., Reza, F., Chiovelli, S., and Revega, T., (2005). Erosion–corrosion Behaviour of WC-based MMCs in Liquid–solid Slurries. Wear, Cilt:259, Sayı:1, ss:181-195.
  • Gur, A.K., Ozay, C., Orhan, A., Buytoz, S., Caligulu, U., and Yigitturk, N., (2014). Wear Properties of Fe-Cr-C and B4C Powder Coating on AISI 316 Stainless Steel Analyzed by the Taguchi Method. Materials Testing, Cilt:56, Sayı:5, ss:393-398.
  • Lin, Y.C., Chen, H.M., and Chen, Y.C., (2013). Microstructures and Wear Properties of Various Clad Layers of the Fe–W–C–B–Cr System. Surface and Coatings Technology, Cilt:236, ss:410-419.
  • Iakovou, R., Bourithis, L., and Papadimitriou, G., (2002). Synthesis of Boride Coatings on Steel Using Plasma Transferred Arc (PTA) Process and Its Wear Performance. Wear, Cilt:252, Sayı:11, ss:1007-1015.
  • Buytoz, S., Orhan, A., Gur, A.K., and Caligulu, U., (2013). Microstructural Development of Fe–Cr–C and B4C Powder Alloy Coating on Stainless Steel by Plasma-Transferred Arc Weld Surfacing. Arabian Journal for Science and Engineering. Cilt:38, Sayı:8, ss:2197-2204.
  • Wieczerzak, K., Bała, P., Stępień, M., Cios, G., and Kozieł, T., (2015). The Characterization of Cast Fe-Cr-C Alloy. Archives of Metallurgy and Materials, Cilt:60, Sayı:2, ss:779-782.
  • Matik, U. And Çıtak, R., (2015). Influence of the Heat Treatment on Hardness and Adhesive Wear Performance of Ni-P Deposit with Low Phosphorus Content. Materials Testing, Cilt:57, Sayı:5, ss:431-436.
Yıl 2016, Cilt: 11 Sayı: 4, 171 - 184, 13.10.2016

Öz

Kaynakça

  • Cheng, J.B., Xu, B.S., Liang, X.B., and Wu, Y.X., (2008). Microstructure and Mechanical Characteristics of Iron-Based Coating Prepared by Plasma Transferred Arc Cladding Process. Materials Science and Engineering: A. Cilt:492, Sayı:1, ss:407-412.
  • Veinthal, R., Sergejev, F., Zikin, A.,Tarbe, R., and Hornung, J., (2013). Abrasive Impact Wear and Surface Fatigue Wear Behaviour of Fe–Cr–C PTA Overlays. Wear, Cilt:301, Sayı:1, ss:102-108.
  • Liu, Y.F., Xia, Z.Y., Han, J.M., Zhang, G.L.,and Yang, S.Z., (2006). Microstructure and Wear Behavior of (Cr, Fe)7C3 Reinforced Composite Coating Produced by Plasma Transferred Arc Weld-surfacing Process. Surface and Coatings Technology, Cilt:201, Sayı:3, ss:863-867.
  • Hu, G., Meng, H., and Liu, J., (2014). Microstructure and Corrosion Resistance of Induction Melted Fe-Based Alloy Coating. Surface And Coatings Technology, Cilt:251, ss:300-306.
  • Hou, Q.Y., Gao, J.S., and Zhou, F., (2005). Microstructure and Wear Characteristics of Cobalt-Based Alloy Deposited by Plasma Transferred Arc Weld Surfacing. Surface and Coatings Technology, Cilt:194, Sayı:2, ss:238-243.
  • Bourithis, E., Tazedakis, A., and Papadimitriou, G., (2002). A Study on The Surface Treatment of “Calmax” Tool Steel by a Plasma Transferred Arc (PTA) Process. Journal of Materials Processing Technology, Cilt:128, Sayı:1, ss:169-177.
  • Gür, A.K., (2013). Investigating the Wear Behaviour of Fecrc/B4c Powder Alloys Coating Produced by Plasma Transferred Arc Weld Surfacing Using the Taguchi Method. Materials Testing, Cilt:55, Sayı:6, ss:462-467.
  • Zikin, A., Hussainova, I., Katsich, C., Badisch, E., and Tomastik, C., (2012). Advanced Chromium Carbide-Based Hardfacings. Surface and Coatings Technology, Cilt:206, Sayı:19, ss:4270-4278.
  • Yuan, Y. and Li, Z., (2014). Effects of Rod Carbide Size, Content, Loading and Sliding Distance on the Friction and Wear Behaviors of (Cr, Fe)7C3-Reinforced α-Fe Based Composite Coating Produced via PTA Welding Process. Surface and Coatings Technology, Cilt:248, ss:9-22.
  • Neville, A., Reza, F., Chiovelli, S., and Revega, T., (2005). Erosion–corrosion Behaviour of WC-based MMCs in Liquid–solid Slurries. Wear, Cilt:259, Sayı:1, ss:181-195.
  • Gur, A.K., Ozay, C., Orhan, A., Buytoz, S., Caligulu, U., and Yigitturk, N., (2014). Wear Properties of Fe-Cr-C and B4C Powder Coating on AISI 316 Stainless Steel Analyzed by the Taguchi Method. Materials Testing, Cilt:56, Sayı:5, ss:393-398.
  • Lin, Y.C., Chen, H.M., and Chen, Y.C., (2013). Microstructures and Wear Properties of Various Clad Layers of the Fe–W–C–B–Cr System. Surface and Coatings Technology, Cilt:236, ss:410-419.
  • Iakovou, R., Bourithis, L., and Papadimitriou, G., (2002). Synthesis of Boride Coatings on Steel Using Plasma Transferred Arc (PTA) Process and Its Wear Performance. Wear, Cilt:252, Sayı:11, ss:1007-1015.
  • Buytoz, S., Orhan, A., Gur, A.K., and Caligulu, U., (2013). Microstructural Development of Fe–Cr–C and B4C Powder Alloy Coating on Stainless Steel by Plasma-Transferred Arc Weld Surfacing. Arabian Journal for Science and Engineering. Cilt:38, Sayı:8, ss:2197-2204.
  • Wieczerzak, K., Bała, P., Stępień, M., Cios, G., and Kozieł, T., (2015). The Characterization of Cast Fe-Cr-C Alloy. Archives of Metallurgy and Materials, Cilt:60, Sayı:2, ss:779-782.
  • Matik, U. And Çıtak, R., (2015). Influence of the Heat Treatment on Hardness and Adhesive Wear Performance of Ni-P Deposit with Low Phosphorus Content. Materials Testing, Cilt:57, Sayı:5, ss:431-436.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

TURAN Gürgenç

CİHAN Özel

Yayımlanma Tarihi 13 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 11 Sayı: 4

Kaynak Göster

APA Gürgenç, T., & Özel, C. (2016). PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ. Technological Applied Sciences, 11(4), 171-184.
AMA Gürgenç T, Özel C. PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ. NWSA. Ekim 2016;11(4):171-184.
Chicago Gürgenç, TURAN, ve CİHAN Özel. “PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ”. Technological Applied Sciences 11, sy. 4 (Ekim 2016): 171-84.
EndNote Gürgenç T, Özel C (01 Ekim 2016) PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ. Technological Applied Sciences 11 4 171–184.
IEEE T. Gürgenç ve C. Özel, “PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ”, NWSA, c. 11, sy. 4, ss. 171–184, 2016.
ISNAD Gürgenç, TURAN - Özel, CİHAN. “PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ”. Technological Applied Sciences 11/4 (Ekim 2016), 171-184.
JAMA Gürgenç T, Özel C. PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ. NWSA. 2016;11:171–184.
MLA Gürgenç, TURAN ve CİHAN Özel. “PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ”. Technological Applied Sciences, c. 11, sy. 4, 2016, ss. 171-84.
Vancouver Gürgenç T, Özel C. PTA YÖNTEMİ İLE GERÇEKLEŞTİRİLEN FE-CR-W-B-C KOMPOZİT KAPLAMASININ MİKROYAPI VE MEKANİK ÖZELLİKLERİ. NWSA. 2016;11(4):171-84.