Research Article
BibTex RIS Cite

PEYZAJ KARAKTERİ İLE ÇIĞ DİNAMİKLERİNİN ENTEGRASYONU: 2024 BİNGÖL YENİSU ÇIĞ OLAYI ÜZERİNE BİR DEĞERLENDİRME

Year 2025, Volume: 7 Issue: 2, 98 - 114, 31.12.2025
https://doi.org/10.56629/paud.1811390

Abstract

Bu çalışma, 2024 yılında ölümlü bir çığ olayının yaşandığı Bingöl Yenisu Köyü’nde, peyzaj karakteri ile çığ dinamikleri arasındaki etkileşimi incelemektedir. RAMMS:: Avalanche modeli ve CBS tabanlı peyzaj karakter analizi entegrasyonu ile kar kalınlığı, akış hızı ve dinamik basınç gibi parametreler mekânsal olarak değerlendirilmiştir. Bulgular, zayıf bitki örtüsüne sahip granitoyid formasyonlu kuzey yamaçlarının en yüksek çığ potansiyeline sahip olduğunu; ormanlık ve tarımsal alanların ise doğal tampon işlevi gördüğünü ortaya koymuştur. Çalışmada “doğa temelli peyzaj stratejileri”, çalışmaların kavramsal bir yaklaşımı olarak değil; bitki örtüsü yoğunluğu, arazi eğimi, topoğrafik eşikler (eğim kırımları ve yüzey pürüzlülüğü), toprak stabilitesi ve mevcut arazi kullanım türleri gibi mekânsal ve ekolojik göstergelere dayalı olarak değerlendirilmiştir. Sonuçlar, bu göstergelere dayalı peyzaj temelli yaklaşımların çığ riskinin azaltılmasında ve dağlık alanlarda ekolojik dayanıklılığın güçlendirilmesinde etkili bir planlama aracı olabileceğini göstermektedir.

References

  • Abdel‐Fattah, D., Danielson, M., Ekenberg, L., Hock, R., and Trainor, S. (2024). Application of a structured decision‐making process in cryospheric hazard planning: Case study of Bering Glacier surges on local state planning in Alaska. Journal of Multi-Criteria Decision Analysis, 31(1–2). https://doi.org/10.1002/mcda.1825
  • Akça, E., Aydemir, S., Kadir, S., Eren, M., Zucca, C., Günal, H., Previtali, F., Zdruli, P., Çilek, A., Budak, M., Karakeçe, A., Kapur, S., and FitzPatrick, E. (2018). Calcisols and Leptosols. In World Soils Book Series (pp. 139–167). https://doi.org/10.1007/978-3-319-64392-2_10
  • Akgül, M., Yurtseven, H., Demir, M., Akay, A. E., Gülci, S., and Öztürk, T. (2016). İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. İstanbul Üniversitesi Orman Fakültesi Dergisi, 66(1): 114-118. https://doi.org/10.17099/jffiu.23976
  • Ancey, C. (2001). Geomorphological Fluid Mechanics: Selected Topics in Geological and Geomorphological Fluid Mechanics. In Snow avalanches (pp. 319–338). Springer.
  • Bartelt, P., Bühler, Y., Buser, O., Christen, M., and Meier, L. (2012). Modeling mass‐dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. Journal of Geophysical Research: Earth Surface, 117(F1). https://doi.org/10.1029/2010JF001957
  • Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., and Schumacher, L. (2017). RAMMS: Avalanche user manuel. Swiss Federal Institute of Technology.
  • Bartelt, P., Buser, O., Vera Valero, C., and Bühler, Y. (2016). Configurational energy and the formation of mixed flowing/powder snow and ice avalanches. Annals of Glaciology, 57(71), 179–188. https://doi.org/10.3189/2016AoG71A464
  • Bartlett, D., Gomez-Martin, E., Milliken, S., and Parmer, D. (2017). Introducing landscape character assessment and the ecosystem service approach to India: A case study. Landscape and Urban Planning, 167(May), 257–266. https://doi.org/10.1016/j.landurbplan.2017.06.013
  • Bathrellos, G. D., and Skilodimou, H. D. (2019). Land use planning for natural hazards. Land, 8(9), 128. https://doi.org/10.3390/land8090128
  • Bebi, P., Kulakowski, D., and Rixen, C. (2009). Snow avalanche disturbances in forest ecosystems-State of research and implications for management. Forest Ecology and Management, 257(9), 1883–1892. https://doi.org/10.1016/j.foreco.2009.01.050
  • Bousquet, M., Kuller, M., Lacroix, S., and Vanrolleghem, P. A. (2023). A critical review of multicriteria decision analysis practices in planning of urban green spaces and nature-based solutions. Blue-Green Systems, 5(2), 200–219. https://doi.org/10.2166/bgs.2023.132
  • Bulut, İ., Yüksel, A., Yıldız, E., Meral, A., Kolak, M. N., Kocademir, D., Akkuş, H., Mohabbi, M., and Varolgüneş, S. (2024). Türkiye’de çığ kontrol projelerinin hazırlanma süreçleri: Bingöl ili Adaklı ilçesi Aktaş köyü örneği. Bingöl Üniversitesi Teknik Bilimler Dergisi, 5(2), 13–27.
  • Bühler, Y., von Rickenbach, D., Stoffel, A., Margreth, S., Stoffel, L., and Christen, M. (2018). Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping. Natural Hazards and Earth System Sciences, 18(12), 3235–3251.
  • Bütün, L., and Koçyiğit, Ö. (2019). RAMMS programı ile simülasyon çalışması: Bozdağ örneğinde çığ tekerrür periyodunun sonuçlara etkisi. International Science and Engineering Application Symposium on Hazards, Karabük, Turkey. (169–173).
  • Casteller, A., Häfelfinger, T., Cortés Donoso, E., Podvin, K., Kulakowski, D., and Bebi, P. (2018). Assessing the interaction between mountain forests and snow avalanches at Nevados de Chillán, Chile and its implications for ecosystem-based disaster risk reduction. Natural Hazards and Earth System Sciences, 18(4), 1173–1186. https://doi.org/10.5194/nhess-18-1173-2018
  • Chettri, N., Adhikari, B., Chaudhary, S., and Wangchuk, K. (2023). Changing discourses in the third pole: A systematic review of climate change impact on biodiversity in the Hindu Kush Himalaya. Ecological Indicators, 155, 111046. https://doi.org/10.1016/j.ecolind.2023.111046
  • Choubin, B., Borji, M., Mosavi, A., Sajedi-Hosseini, F., Singh, V. P., and Shamshirband, S. (2019). Snow avalanche hazard prediction using machine learning methods. Journal of Hydrology, 577, 123929. https://doi.org/10.1016/j.jhydrol.2019.123929
  • Christen, M., Kowalski, J., and Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 1–14. https://doi.org/10.1016/j.coldregions.2010.04.005
  • Dastranj, A., Noor, H., and Kalat, A. B. (2021). GIS-based landslide susceptibility zoning using multi-criteria decision-making method: A case study in Binalood Mountains, Iran. Journal of Rescue and Relief, 1(2), 19–29. https://doi.org/10.32592/jorar.2022.14.1.3
  • Dillon, J., and Hammonds, K. (2021). Brief communication: Initializing RAMMS with high resolution LIDAR data for avalanche simulations. In Preprint. https://doi.org/10.5194/tc-2020-368
  • Durgin, P. B. (1977). Landslides and the weathering of granitic rocks . Geological Society of America Reviews in Engineering Geology, 3, 127–131.
  • Eckerstorfer, M., and Malnes, E. (2015). Manual detection of snow avalanche debris using high-resolution Radarsat-2 SAR images. Cold Regions Science and Technology, 120, 205–218. https://doi.org/10.1016/j.coldregions.2015.08.016
  • Feizizadeh, B., and Blaschke, T. (2014). An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. International Journal of Geographical Information Science, 28(3), 610–638. https://doi.org/10.1080/13658816.2013.869821
  • Gezici, K., Şengül, S., and Kesgin, E. (2025). Assessment of soil erosion risk in the mountainous region of northeastern Türkiye based on the RUSLE model and CMIP6 climate projections. Environmental Earth Sciences, 84(6), 167. https://doi.org/10.1007/s12665-025-12184-6
  • Gil-Mastalerczyk, J. (2018). Conscious approach to urban and extra-urban space restructuring as seen in the designs of Architecture students. MATEC Web of Conferences, 174, 04016. https://doi.org/10.1051/matecconf/201817404016
  • Gomes, A., García, H., Gómez-Pazo, A., and Chaminé, H. I. (2024). On dialogue about earth processes and sustainable environment in a changing world: a tribute to the legacy of the landscape traveller Augusto Pérez-Alberti. Environmental Earth Sciences, 83(16), 482. https://doi.org/10.1007/s12665-024-11780-2
  • Habib, M., Habib, A., and Abboud, M. (2024). Multi-aspect critical assessment of applying digital elevation models in environmental hazard mapping. Revue Internationale de Géomatique, 33(1), 247–271. https://doi.org/10.32604/rig.2024.053857
  • Hias Bestari, A., Irbah, A., Fajar Nugroho, S., and Bayu Sekaranom, A. (2023). Placement location mapping for nature-based solutions in flood vulnerable areas as a disaster management alternative in Bantul Regency. E3S Web of Conferences, 468, 04003. https://doi.org/10.1051/e3sconf/202346804003
  • Horton, S., Herla, F., and Haegeli, P. (2025). Clustering simulated snow profiles to form avalanche forecast regions. Geoscientific Model Development, 18(1), 193–209. https://doi.org/10.5194/gmd-18-193-2025
  • Işık, F., Çağlak, S., Eraslan, S., Zeybek, H. I., and Kanyılmaz, R. (2024, October 23). Detection of the first icing roads in winter: The case of Gümüşhane City (Türkiye). Research Square. https://doi.org/10.21203/rs.3.rs-5278549/v1
  • Karakas, G., Unal, E. O., Tunar Ozcan, N., Cetinkaya, S., Can, R., Gokceoglu, C., and Kocaman, S. (2023). Co-seismic landslide based validation of susceptibility mappaing after Kahramanmaraş erthquakes (Feb 6,2023) in Amanos Mountains. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1/W2-2023, 429–436. https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-429-2023
  • Koçyiğit, Ö., Tekin, E., and Arslan, G. (2016). Avalanche research studies at Bozdağ. Disaster Science and Engineering, 2(2), 40–45.
  • Kougkoulos, I., Cook, S. J., Jomelli, V., Clarke, L., Symeonakis, E., Dortch, J. M., Edwards, L. A., and Merad, M. (2018). Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes. Science of The Total Environment, 621, 1453–1466. https://doi.org/10.1016/j.scitotenv.2017.10.083
  • Kumar, P., Choudhary, A., Kumar, R. P., Kumar, P., and Kumar, G. (2024). Comprehensive geospatial mapping and monitoring of an eastern coalfield in India. Discover Geoscience, 2(1), 32. https://doi.org/10.1007/s44288-024-00039-9
  • Kumar, S., Srivastava, P. K., and Snehmani. (2017). GIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya. Geocarto International, 32(11), 1254–1267. https://doi.org/10.1080/10106049.2016.1206626
  • Kunii, Y., O’Keefe, P., Burley, J., Loures, L., and Regina Villanueva, M. (2021). Landscape hazards: Destructive build environment zones and safe areas - An American case study. In Landscape Architecture - Processes and Practices Towards Sustainable Development. IntechOpen. https://doi.org/10.5772/intechopen.91228
  • Li, S., and Zhang, J. (2024). Landscape character identification and zoning management in disaster-prone mountainous areas: A case study of Mentougou District, Beijing. Land, 13(12), 2191. https://doi.org/10.3390/land13122191
  • Margreth, S., Funk, M., Tobler, D., Dalban, P., Meier, L., and Lauper, J. (2017). Analysis of the hazard caused by ice avalanches from the hanging glacier on the Eiger west face. Cold Regions Science and Technology, 144, 63–72. https://doi.org/10.1016/j.coldregions.2017.05.012
  • McClung, D. (2023). The avalanche handbook (4th ed.). Mountaineers Books.
  • McClung, D. M., Mears, A. I., and Schaerer, P. (1989). Extreme avalanche run-out: Data from four Mountain Ranges. Annals of Glaciology, 13, 180–184. https://doi.org/10.1017/S0260305500007850
  • Meral, A., and Yüksel, A. (2024). Çığ Kontrolü Projelendirme Çalışmalarında Risk Analizi Değerlendirmesi. Ege 11th Uluslararası Uygulamalı Bilimler Kongresi, 842–855.
  • Micu, M., and Roznovietchi, I. (2025). Building landslide risk culture in Romania: the role of geomorphology within a transdisciplinary approach. Landslides, 22(9), 3133–3147. https://doi.org/10.1007/s10346-025-02529-4
  • Moos, C., Stritih, A., Teich, M., and Bottero, A. (2023). Mountain protective forests under threat? an in-depth review of global change impacts on their protective effect against natural hazards. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1223934
  • Mukhtar, M., Shangguan, D., Ding, Y., Anjum, M. N., Banerjee, A., Butt, A. Q., Yadav, N., Li, D., Yang, Q., Khan, A. A., Muhammad, A., and He, B. (2024). Integrated flood risk assessment in Hunza-Nagar, Pakistan: unifying big climate data analytics and multi-criteria decision-making with GIS. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1337081
  • Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., … Yang, D. Q. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5), 424–430. https://doi.org/10.1038/nclimate2563
  • Rahbek, C., Borregaard, M. K., Antonelli, A., Colwell, R. K., Holt, B. G., Nogues-Bravo, D., Rasmussen, C. M. Ø., Richardson, K., Rosing, M. T., Whittaker, R. J., and Fjeldså, J. (2019). Building mountain biodiversity: Geological and evolutionary processes. Science, 365(6458), 1114–1119. https://doi.org/10.1126/science.aax0151
  • RAMMS. (2024). RAMMS::Avalanche user manual (v1.8.0). RAMMS.
  • Schweizer, J., Bruce Jamieson, J., and Schneebeli, M. (2003). Snow avalanche formation. Reviews of Geophysics, 41(4). https://doi.org/10.1029/2002RG000123
  • Schweizer, J., and Lütschg, M. (2001). Characteristics of human-triggered avalanches. Cold Regions Science and Technology, 33(2–3), 147–162. https://doi.org/10.1016/S0165-232X(01)00037-4
  • Sharma, A., and Miyazaki, H. (2019). Multi-hazard risk assessment in urban planning and development using AHP. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W8, 363–371. https://doi.org/10.5194/isprs-archives-XLII-3-W8-363-2019
  • Sinan, A., and Behçet, L. (2014). The flora of Altıkardeş Mountain and its surroundings (Genç, Bingöl/Turkey). Biological Diversity and Conservation, 7(3), 98–116.
  • Sovilla, B., McElwaine, J. N., and Köhler, A. (2018). The intermittency regions of powder snow avalanches. Journal of Geophysical Research: Earth Surface, 123(10), 2525–2545. https://doi.org/10.1029/2018JF004678
  • Sowińska-Świerkosz, B., García, J., and Wendling, L. (2024). Linkages between the concept of nature-based solutions and the notion of landscape. Ambio, 53(2), 227–241. https://doi.org/10.1007/s13280-023-01935-z
  • Stoffel, M., and Huggel, C. (2012). Effects of climate change on mass movements in mountain environments. Progress in Physical Geography: Earth and Environment, 36(3), 421–439. https://doi.org/10.1177/0309133312441010
  • URL1. (2025). Türkiye nüfusu: il ilçe mahalle köy nüfusları. Https://Www.Nufusune.Com/.
  • Wang, H., Wang, B. B., Cui, P., Ma, Y. M., Wang, Y., Hao, J. S., Wang, Y., Li, Y. M., Sun, L. J., Wang, J., Zhang, G. T., Li, W. M., Lei, Y., Zhao, W. Q., Tang, J. B., and Li, C. Y. (2024). Disaster effects of climate change in High Mountain Asia: State of art and scientific challenges. Advances in Climate Change Research, 15(3), 367–389. https://doi.org/10.1016/j.accre.2024.06.003
  • Whelchel, A. W., Reguero, B. G., van Wesenbeeck, B., and Renaud, F. G. (2018). Advancing disaster risk reduction through the integration of science, design, and policy into eco-engineering and several global resource management processes. International Journal of Disaster Risk Reduction, 32, 29–41. https://doi.org/10.1016/j.ijdrr.2018.02.030
  • Wyss, R., Luthe, T., Pedoth, L., Schneiderbauer, S., Adler, C., Apple, M., Acosta, E. E., Fitzpatrick, H., Haider, J., Ikizer, G., Imperiale, A. J., Karanci, N., Posch, E., Saidmamatov, O., and Thaler, T. (2022). Mountain resilience: A systematic literature review and paths to the future. Mountain Research and Development, 42(2). https://doi.org/10.1659/MRD-JOURNAL-D-21-00044.1
  • Ye, H., Bai, D., Liu, S., Tan, S., Wang, J., Xie, F., and Zhu, Y. (2025). Spatiotemporal evolution characteristics of freeze–thaw erosion intensity in the high-cold mountainous areas of Northwestern Yunnan from 2017 to 2023. Scientific Reports, 15(1), 9521. https://doi.org/10.1038/s41598-025-91690-w
  • Yıldız, E., and Bulut, İ. (2024). Türkiye’de potansiyel çığ başlama bölgelerinin tespiti, çığ mobil uygulaması ve çığ tehlike haritalarının hazırlanması süreçleri: Palandöken Kayak Merkezi örneği. Çölleşme, Erozyon ve İklim Değişikliği, Special Issue, 157–181.
  • Yildirim, Y., Cirak, B. N., and Akin, A. (2024). How can research-based studio experience assist in tackling natural disasters? Natural Hazards, 120(15), 14083–14099. https://doi.org/10.1007/s11069-024-06745-4
  • Yousefi, S., Pourghasemi, H. R., Emami, S. N., Pouyan, S., Eskandari, S., and Tiefenbacher, J. P. (2020a). A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Scientific Reports, 10(1), 12144. https://doi.org/10.1038/s41598-020-69233-2
  • Yüksel, A., Meral, A., Demir, Y., and Eroğlu, E. (2020). Çapakçur Mikrohavzası’nda (Bingöl) mikrohavza ölçekli peyzaj değerlendirmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 7(1), 16–26. https://doi.org/10.30910/turkjans.679893

INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL

Year 2025, Volume: 7 Issue: 2, 98 - 114, 31.12.2025
https://doi.org/10.56629/paud.1811390

Abstract

This study investigates the interaction between landscape character and avalanche dynamics in Yenisu Village (Bingöl, Türkiye), where a fatal avalanche event occurred in 2024. By integrating the RAMMS::Avalanche model with GIS-based landscape character analysis, key parameters including snow depth, flow velocity, and dynamic impact pressure were spatially evaluated. The results reveal that north-facing slopes underlain by granitoid formations and characterized by sparse vegetation exhibit the highest avalanche susceptibility, whereas forested and agricultural landscape units function as effective natural buffering systems. In this study, nature-based landscape strategies are not treated as purely conceptual approaches, but are operationalized through spatially explicit and ecologically grounded indicators, including vegetation density, terrain slope, topographic thresholds (slope break zones and surface roughness), soil stability, and existing land-use/land-cover patterns. The findings demonstrate that landscape-based, nature-driven planning approaches grounded in these indicators can serve as effective tools for reducing avalanche risk and enhancing ecological resilience in mountainous environments.

References

  • Abdel‐Fattah, D., Danielson, M., Ekenberg, L., Hock, R., and Trainor, S. (2024). Application of a structured decision‐making process in cryospheric hazard planning: Case study of Bering Glacier surges on local state planning in Alaska. Journal of Multi-Criteria Decision Analysis, 31(1–2). https://doi.org/10.1002/mcda.1825
  • Akça, E., Aydemir, S., Kadir, S., Eren, M., Zucca, C., Günal, H., Previtali, F., Zdruli, P., Çilek, A., Budak, M., Karakeçe, A., Kapur, S., and FitzPatrick, E. (2018). Calcisols and Leptosols. In World Soils Book Series (pp. 139–167). https://doi.org/10.1007/978-3-319-64392-2_10
  • Akgül, M., Yurtseven, H., Demir, M., Akay, A. E., Gülci, S., and Öztürk, T. (2016). İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. İstanbul Üniversitesi Orman Fakültesi Dergisi, 66(1): 114-118. https://doi.org/10.17099/jffiu.23976
  • Ancey, C. (2001). Geomorphological Fluid Mechanics: Selected Topics in Geological and Geomorphological Fluid Mechanics. In Snow avalanches (pp. 319–338). Springer.
  • Bartelt, P., Bühler, Y., Buser, O., Christen, M., and Meier, L. (2012). Modeling mass‐dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. Journal of Geophysical Research: Earth Surface, 117(F1). https://doi.org/10.1029/2010JF001957
  • Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., and Schumacher, L. (2017). RAMMS: Avalanche user manuel. Swiss Federal Institute of Technology.
  • Bartelt, P., Buser, O., Vera Valero, C., and Bühler, Y. (2016). Configurational energy and the formation of mixed flowing/powder snow and ice avalanches. Annals of Glaciology, 57(71), 179–188. https://doi.org/10.3189/2016AoG71A464
  • Bartlett, D., Gomez-Martin, E., Milliken, S., and Parmer, D. (2017). Introducing landscape character assessment and the ecosystem service approach to India: A case study. Landscape and Urban Planning, 167(May), 257–266. https://doi.org/10.1016/j.landurbplan.2017.06.013
  • Bathrellos, G. D., and Skilodimou, H. D. (2019). Land use planning for natural hazards. Land, 8(9), 128. https://doi.org/10.3390/land8090128
  • Bebi, P., Kulakowski, D., and Rixen, C. (2009). Snow avalanche disturbances in forest ecosystems-State of research and implications for management. Forest Ecology and Management, 257(9), 1883–1892. https://doi.org/10.1016/j.foreco.2009.01.050
  • Bousquet, M., Kuller, M., Lacroix, S., and Vanrolleghem, P. A. (2023). A critical review of multicriteria decision analysis practices in planning of urban green spaces and nature-based solutions. Blue-Green Systems, 5(2), 200–219. https://doi.org/10.2166/bgs.2023.132
  • Bulut, İ., Yüksel, A., Yıldız, E., Meral, A., Kolak, M. N., Kocademir, D., Akkuş, H., Mohabbi, M., and Varolgüneş, S. (2024). Türkiye’de çığ kontrol projelerinin hazırlanma süreçleri: Bingöl ili Adaklı ilçesi Aktaş köyü örneği. Bingöl Üniversitesi Teknik Bilimler Dergisi, 5(2), 13–27.
  • Bühler, Y., von Rickenbach, D., Stoffel, A., Margreth, S., Stoffel, L., and Christen, M. (2018). Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping. Natural Hazards and Earth System Sciences, 18(12), 3235–3251.
  • Bütün, L., and Koçyiğit, Ö. (2019). RAMMS programı ile simülasyon çalışması: Bozdağ örneğinde çığ tekerrür periyodunun sonuçlara etkisi. International Science and Engineering Application Symposium on Hazards, Karabük, Turkey. (169–173).
  • Casteller, A., Häfelfinger, T., Cortés Donoso, E., Podvin, K., Kulakowski, D., and Bebi, P. (2018). Assessing the interaction between mountain forests and snow avalanches at Nevados de Chillán, Chile and its implications for ecosystem-based disaster risk reduction. Natural Hazards and Earth System Sciences, 18(4), 1173–1186. https://doi.org/10.5194/nhess-18-1173-2018
  • Chettri, N., Adhikari, B., Chaudhary, S., and Wangchuk, K. (2023). Changing discourses in the third pole: A systematic review of climate change impact on biodiversity in the Hindu Kush Himalaya. Ecological Indicators, 155, 111046. https://doi.org/10.1016/j.ecolind.2023.111046
  • Choubin, B., Borji, M., Mosavi, A., Sajedi-Hosseini, F., Singh, V. P., and Shamshirband, S. (2019). Snow avalanche hazard prediction using machine learning methods. Journal of Hydrology, 577, 123929. https://doi.org/10.1016/j.jhydrol.2019.123929
  • Christen, M., Kowalski, J., and Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 1–14. https://doi.org/10.1016/j.coldregions.2010.04.005
  • Dastranj, A., Noor, H., and Kalat, A. B. (2021). GIS-based landslide susceptibility zoning using multi-criteria decision-making method: A case study in Binalood Mountains, Iran. Journal of Rescue and Relief, 1(2), 19–29. https://doi.org/10.32592/jorar.2022.14.1.3
  • Dillon, J., and Hammonds, K. (2021). Brief communication: Initializing RAMMS with high resolution LIDAR data for avalanche simulations. In Preprint. https://doi.org/10.5194/tc-2020-368
  • Durgin, P. B. (1977). Landslides and the weathering of granitic rocks . Geological Society of America Reviews in Engineering Geology, 3, 127–131.
  • Eckerstorfer, M., and Malnes, E. (2015). Manual detection of snow avalanche debris using high-resolution Radarsat-2 SAR images. Cold Regions Science and Technology, 120, 205–218. https://doi.org/10.1016/j.coldregions.2015.08.016
  • Feizizadeh, B., and Blaschke, T. (2014). An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. International Journal of Geographical Information Science, 28(3), 610–638. https://doi.org/10.1080/13658816.2013.869821
  • Gezici, K., Şengül, S., and Kesgin, E. (2025). Assessment of soil erosion risk in the mountainous region of northeastern Türkiye based on the RUSLE model and CMIP6 climate projections. Environmental Earth Sciences, 84(6), 167. https://doi.org/10.1007/s12665-025-12184-6
  • Gil-Mastalerczyk, J. (2018). Conscious approach to urban and extra-urban space restructuring as seen in the designs of Architecture students. MATEC Web of Conferences, 174, 04016. https://doi.org/10.1051/matecconf/201817404016
  • Gomes, A., García, H., Gómez-Pazo, A., and Chaminé, H. I. (2024). On dialogue about earth processes and sustainable environment in a changing world: a tribute to the legacy of the landscape traveller Augusto Pérez-Alberti. Environmental Earth Sciences, 83(16), 482. https://doi.org/10.1007/s12665-024-11780-2
  • Habib, M., Habib, A., and Abboud, M. (2024). Multi-aspect critical assessment of applying digital elevation models in environmental hazard mapping. Revue Internationale de Géomatique, 33(1), 247–271. https://doi.org/10.32604/rig.2024.053857
  • Hias Bestari, A., Irbah, A., Fajar Nugroho, S., and Bayu Sekaranom, A. (2023). Placement location mapping for nature-based solutions in flood vulnerable areas as a disaster management alternative in Bantul Regency. E3S Web of Conferences, 468, 04003. https://doi.org/10.1051/e3sconf/202346804003
  • Horton, S., Herla, F., and Haegeli, P. (2025). Clustering simulated snow profiles to form avalanche forecast regions. Geoscientific Model Development, 18(1), 193–209. https://doi.org/10.5194/gmd-18-193-2025
  • Işık, F., Çağlak, S., Eraslan, S., Zeybek, H. I., and Kanyılmaz, R. (2024, October 23). Detection of the first icing roads in winter: The case of Gümüşhane City (Türkiye). Research Square. https://doi.org/10.21203/rs.3.rs-5278549/v1
  • Karakas, G., Unal, E. O., Tunar Ozcan, N., Cetinkaya, S., Can, R., Gokceoglu, C., and Kocaman, S. (2023). Co-seismic landslide based validation of susceptibility mappaing after Kahramanmaraş erthquakes (Feb 6,2023) in Amanos Mountains. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1/W2-2023, 429–436. https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-429-2023
  • Koçyiğit, Ö., Tekin, E., and Arslan, G. (2016). Avalanche research studies at Bozdağ. Disaster Science and Engineering, 2(2), 40–45.
  • Kougkoulos, I., Cook, S. J., Jomelli, V., Clarke, L., Symeonakis, E., Dortch, J. M., Edwards, L. A., and Merad, M. (2018). Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes. Science of The Total Environment, 621, 1453–1466. https://doi.org/10.1016/j.scitotenv.2017.10.083
  • Kumar, P., Choudhary, A., Kumar, R. P., Kumar, P., and Kumar, G. (2024). Comprehensive geospatial mapping and monitoring of an eastern coalfield in India. Discover Geoscience, 2(1), 32. https://doi.org/10.1007/s44288-024-00039-9
  • Kumar, S., Srivastava, P. K., and Snehmani. (2017). GIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya. Geocarto International, 32(11), 1254–1267. https://doi.org/10.1080/10106049.2016.1206626
  • Kunii, Y., O’Keefe, P., Burley, J., Loures, L., and Regina Villanueva, M. (2021). Landscape hazards: Destructive build environment zones and safe areas - An American case study. In Landscape Architecture - Processes and Practices Towards Sustainable Development. IntechOpen. https://doi.org/10.5772/intechopen.91228
  • Li, S., and Zhang, J. (2024). Landscape character identification and zoning management in disaster-prone mountainous areas: A case study of Mentougou District, Beijing. Land, 13(12), 2191. https://doi.org/10.3390/land13122191
  • Margreth, S., Funk, M., Tobler, D., Dalban, P., Meier, L., and Lauper, J. (2017). Analysis of the hazard caused by ice avalanches from the hanging glacier on the Eiger west face. Cold Regions Science and Technology, 144, 63–72. https://doi.org/10.1016/j.coldregions.2017.05.012
  • McClung, D. (2023). The avalanche handbook (4th ed.). Mountaineers Books.
  • McClung, D. M., Mears, A. I., and Schaerer, P. (1989). Extreme avalanche run-out: Data from four Mountain Ranges. Annals of Glaciology, 13, 180–184. https://doi.org/10.1017/S0260305500007850
  • Meral, A., and Yüksel, A. (2024). Çığ Kontrolü Projelendirme Çalışmalarında Risk Analizi Değerlendirmesi. Ege 11th Uluslararası Uygulamalı Bilimler Kongresi, 842–855.
  • Micu, M., and Roznovietchi, I. (2025). Building landslide risk culture in Romania: the role of geomorphology within a transdisciplinary approach. Landslides, 22(9), 3133–3147. https://doi.org/10.1007/s10346-025-02529-4
  • Moos, C., Stritih, A., Teich, M., and Bottero, A. (2023). Mountain protective forests under threat? an in-depth review of global change impacts on their protective effect against natural hazards. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1223934
  • Mukhtar, M., Shangguan, D., Ding, Y., Anjum, M. N., Banerjee, A., Butt, A. Q., Yadav, N., Li, D., Yang, Q., Khan, A. A., Muhammad, A., and He, B. (2024). Integrated flood risk assessment in Hunza-Nagar, Pakistan: unifying big climate data analytics and multi-criteria decision-making with GIS. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1337081
  • Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., … Yang, D. Q. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5), 424–430. https://doi.org/10.1038/nclimate2563
  • Rahbek, C., Borregaard, M. K., Antonelli, A., Colwell, R. K., Holt, B. G., Nogues-Bravo, D., Rasmussen, C. M. Ø., Richardson, K., Rosing, M. T., Whittaker, R. J., and Fjeldså, J. (2019). Building mountain biodiversity: Geological and evolutionary processes. Science, 365(6458), 1114–1119. https://doi.org/10.1126/science.aax0151
  • RAMMS. (2024). RAMMS::Avalanche user manual (v1.8.0). RAMMS.
  • Schweizer, J., Bruce Jamieson, J., and Schneebeli, M. (2003). Snow avalanche formation. Reviews of Geophysics, 41(4). https://doi.org/10.1029/2002RG000123
  • Schweizer, J., and Lütschg, M. (2001). Characteristics of human-triggered avalanches. Cold Regions Science and Technology, 33(2–3), 147–162. https://doi.org/10.1016/S0165-232X(01)00037-4
  • Sharma, A., and Miyazaki, H. (2019). Multi-hazard risk assessment in urban planning and development using AHP. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W8, 363–371. https://doi.org/10.5194/isprs-archives-XLII-3-W8-363-2019
  • Sinan, A., and Behçet, L. (2014). The flora of Altıkardeş Mountain and its surroundings (Genç, Bingöl/Turkey). Biological Diversity and Conservation, 7(3), 98–116.
  • Sovilla, B., McElwaine, J. N., and Köhler, A. (2018). The intermittency regions of powder snow avalanches. Journal of Geophysical Research: Earth Surface, 123(10), 2525–2545. https://doi.org/10.1029/2018JF004678
  • Sowińska-Świerkosz, B., García, J., and Wendling, L. (2024). Linkages between the concept of nature-based solutions and the notion of landscape. Ambio, 53(2), 227–241. https://doi.org/10.1007/s13280-023-01935-z
  • Stoffel, M., and Huggel, C. (2012). Effects of climate change on mass movements in mountain environments. Progress in Physical Geography: Earth and Environment, 36(3), 421–439. https://doi.org/10.1177/0309133312441010
  • URL1. (2025). Türkiye nüfusu: il ilçe mahalle köy nüfusları. Https://Www.Nufusune.Com/.
  • Wang, H., Wang, B. B., Cui, P., Ma, Y. M., Wang, Y., Hao, J. S., Wang, Y., Li, Y. M., Sun, L. J., Wang, J., Zhang, G. T., Li, W. M., Lei, Y., Zhao, W. Q., Tang, J. B., and Li, C. Y. (2024). Disaster effects of climate change in High Mountain Asia: State of art and scientific challenges. Advances in Climate Change Research, 15(3), 367–389. https://doi.org/10.1016/j.accre.2024.06.003
  • Whelchel, A. W., Reguero, B. G., van Wesenbeeck, B., and Renaud, F. G. (2018). Advancing disaster risk reduction through the integration of science, design, and policy into eco-engineering and several global resource management processes. International Journal of Disaster Risk Reduction, 32, 29–41. https://doi.org/10.1016/j.ijdrr.2018.02.030
  • Wyss, R., Luthe, T., Pedoth, L., Schneiderbauer, S., Adler, C., Apple, M., Acosta, E. E., Fitzpatrick, H., Haider, J., Ikizer, G., Imperiale, A. J., Karanci, N., Posch, E., Saidmamatov, O., and Thaler, T. (2022). Mountain resilience: A systematic literature review and paths to the future. Mountain Research and Development, 42(2). https://doi.org/10.1659/MRD-JOURNAL-D-21-00044.1
  • Ye, H., Bai, D., Liu, S., Tan, S., Wang, J., Xie, F., and Zhu, Y. (2025). Spatiotemporal evolution characteristics of freeze–thaw erosion intensity in the high-cold mountainous areas of Northwestern Yunnan from 2017 to 2023. Scientific Reports, 15(1), 9521. https://doi.org/10.1038/s41598-025-91690-w
  • Yıldız, E., and Bulut, İ. (2024). Türkiye’de potansiyel çığ başlama bölgelerinin tespiti, çığ mobil uygulaması ve çığ tehlike haritalarının hazırlanması süreçleri: Palandöken Kayak Merkezi örneği. Çölleşme, Erozyon ve İklim Değişikliği, Special Issue, 157–181.
  • Yildirim, Y., Cirak, B. N., and Akin, A. (2024). How can research-based studio experience assist in tackling natural disasters? Natural Hazards, 120(15), 14083–14099. https://doi.org/10.1007/s11069-024-06745-4
  • Yousefi, S., Pourghasemi, H. R., Emami, S. N., Pouyan, S., Eskandari, S., and Tiefenbacher, J. P. (2020a). A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Scientific Reports, 10(1), 12144. https://doi.org/10.1038/s41598-020-69233-2
  • Yüksel, A., Meral, A., Demir, Y., and Eroğlu, E. (2020). Çapakçur Mikrohavzası’nda (Bingöl) mikrohavza ölçekli peyzaj değerlendirmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 7(1), 16–26. https://doi.org/10.30910/turkjans.679893
There are 63 citations in total.

Details

Primary Language English
Subjects Land and Water Resources in Landscape Architecture, Computer Technology in Landscape Architecture , Landscape Repair, Landscape Management
Journal Section Research Article
Authors

Alperen Meral 0000-0001-6714-7187

Alaaddin Yuksel 0000-0003-4760-1092

Engin Yıldız 0000-0003-2493-5161

Engin Eroğlu 0000-0002-1777-8375

Submission Date October 27, 2025
Acceptance Date November 26, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Meral, A., Yuksel, A., Yıldız, E., Eroğlu, E. (2025). INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL. JOURNAL OF LANDSCAPE RESEARCH AND PRACTICES (JOLARP), 7(2), 98-114. https://doi.org/10.56629/paud.1811390
AMA Meral A, Yuksel A, Yıldız E, Eroğlu E. INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL. JOLARP. December 2025;7(2):98-114. doi:10.56629/paud.1811390
Chicago Meral, Alperen, Alaaddin Yuksel, Engin Yıldız, and Engin Eroğlu. “INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL”. JOURNAL OF LANDSCAPE RESEARCH AND PRACTICES (JOLARP) 7, no. 2 (December 2025): 98-114. https://doi.org/10.56629/paud.1811390.
EndNote Meral A, Yuksel A, Yıldız E, Eroğlu E (December 1, 2025) INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL. JOURNAL OF LANDSCAPE RESEARCH AND PRACTICES (JOLARP) 7 2 98–114.
IEEE A. Meral, A. Yuksel, E. Yıldız, and E. Eroğlu, “INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL”, JOLARP, vol. 7, no. 2, pp. 98–114, 2025, doi: 10.56629/paud.1811390.
ISNAD Meral, Alperen et al. “INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL”. JOURNAL OF LANDSCAPE RESEARCH AND PRACTICES (JOLARP) 7/2 (December2025), 98-114. https://doi.org/10.56629/paud.1811390.
JAMA Meral A, Yuksel A, Yıldız E, Eroğlu E. INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL. JOLARP. 2025;7:98–114.
MLA Meral, Alperen et al. “INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL”. JOURNAL OF LANDSCAPE RESEARCH AND PRACTICES (JOLARP), vol. 7, no. 2, 2025, pp. 98-114, doi:10.56629/paud.1811390.
Vancouver Meral A, Yuksel A, Yıldız E, Eroğlu E. INTEGRATING LANDSCAPE CHARACTER AND AVALANCHE DYNAMICS: AN ASSESSMENT OF THE 2024 YENISU AVALANCHE EVENT, BİNGOL. JOLARP. 2025;7(2):98-114.