Research Article
BibTex RIS Cite

Mathematical Modeling Self-Efficacy of Middle School and High School Students

Year 2024, Volume: 11 Issue: 4, 99 - 114, 07.07.2024
https://doi.org/10.17275/per.24.51.11.4

Abstract

Mathematical modeling is a cyclical process involving the competencies of understanding the problem, simplifying, mathematizing, working mathematically, interpreting, and validating. Mathematical modeling self-efficacy beliefs are essential to students’ mathematical modeling performance. This study examined middle and high school students’ mathematical modeling self-efficacy beliefs. The participants consisted of 1091 middle school students and 974 high school students. The data were collected through the “Mathematical Modeling Self-Efficacy Scale [MMSS]”. T-tests and ANOVA test statistics were used to determine the effect of gender, school level, grade level and previous engagement in model-eliciting activities on the mathematical modeling self-efficacy beliefs. The results showed that the mathematical modeling self-efficacy beliefs of middle school students were significantly higher than those of high school students. Furthermore, middle school students’ mathematical modeling self-efficacy beliefs did not differ significantly by gender, while at the high school level there was a significant difference in favor of males. Regarding grade levels, only a statistically significant difference was found between the mathematical modeling self-efficacy beliefs of seventh- and eighth-grade students. Moreover, middle and high school students who had previously engaged in model-eliciting activities had significantly higher mathematical modeling self-efficacy beliefs than those who had not. In the accessible literature, there is no study on the mathematical modeling self-efficacy beliefs of middle and high school students. Therefore, we believe this study’s results will contribute to the literature on mathematical modeling.

References

  • Adal, A. A., & Yavuz, İ. (2017). The relationship between mathematics self-efficacy and mathematics anxiety levels of middle school students. International Journal of Field Education, 3(1), 20–41.
  • Albayrak, H. B., & Tarım, K. (2022). Sınıf öğretmeni adaylarının matematiksel modelleme yeterlikleri: Okulda zaman problemi [Mathematical modelling competencies of pre-service primary school teachers: The time at school]. Eğitimde Kuram ve Uygulama [Journal of Theory and Practice in Education], 18(2), 95–112. https://doi.org/10.17244/eku.1163414
  • Artino, A. R. (2012). Academic self-efficacy: from educational theory to instructional practice. Perspectives on Medical Education, 1, 76–85. https://doi.org/10.1007/s40037-012-0012-5
  • Aztekin, S., & Taşpınar Şener, Z. (2015). Türkiye’de matematik eğitimi alanındaki matematiksel modelleme araştırmalarının içerik analizi: Bir meta-sentez çalışması [The content analysis of mathematical modelling studies in Turkey: A meta-synthesis study]. Eğitim ve Bilim [Education and Science], 40(178), 139–161. http://dx.doi.org/10.15390/EB.2015.4125
  • Bandura, A. (1997). Self-efficacy: The exercise of control. W.H. Freeman.
  • Berry, J., & Davies, A. (1996). Written reports. In C. R. Haines & S. Dunthorne (Eds.), Mathematics learning and assessment: Sharing innovative practices. Arnold.
  • Berry, J., & Houston, K. (1995). Mathematical modeling. J. W. Arrowsmith Ltd.
  • Bilgili, S., & Çiltaş, A. (2019). Similarity and differences in visuals in mathematical modeling of primary and secondary mathematics teachers. International Journal of Eurasia Social Sciences, 10(35), 334–353.
  • Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modeling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139. https://doi.org/10.1093/teamat/22.3.123
  • Blum, W. (2011). Can modeling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 15–30). Springer. https://doi.org/10.1007/978-94-007-0910-2_3
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modeling: Can it be taught and learnt? Journal of Mathematical Modeling and Application, 1(1), 45–58.
  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modeling problems. Mathematical modeling: Education, engineering and economics, 222–231. https://doi.org/10.1533/9780857099419.5.221
  • Boaler, J. (2001). Mathematical modeling and new theories of learning. Teaching Mathematics and Its Applications: International Journal of the IMA, 20(3), 121–128. https://doi.org/10.1093/teamat/20.3.121
  • Bong, M., & Clark, R. E. (1999). Comparison between self-concept and self-efficacy in academic motivation research. Educational Psychologist, 34(3), 139–153. https://doi.org/10.1207/s15326985ep3403_1
  • Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM Mathematics Education, 38, 86–95. https://doi.org/10.1007/BF02655883
  • Borromeo-Ferri, R. (2007). Personal experiences and extra-mathematical knowledge as an influence factor on modeling routes of pupils. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (p. 2080–2089). Zypern.
  • Borromeo-Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Springer. https://doi.org/10.1007/978-3-319-68072-9
  • Brady, C. (2018). Modeling and the representational imagination. ZDM Mathematics Education, 50, 45–59. https://doi.org/10.1007/s11858-018-0926-4
  • Cooper, S. E., & Robinson, D. A. G. (1991). The relationship of mathematics selfefficacy beliefs, mathematics anxiety and performances. Measurement and Evaluation in Counseling and Development, 24(1), 4–11.
  • Dede, Y., Akçakın, V., & Kaya, G. (2018). Examining mathematical modeling competencies of pre-service middle school mathematics teachers by gender: Multidimensional item response theory. Adıyaman University Journal of Educational Sciences, 8(2), 150–169. https://doi.org/10.17984/adyuebd.456626
  • Deniz, D., & Akgün, L. (2018). İlköğretim matematik öğretmeni adaylarının matematiksel modelleme becerilerinin incelenmesi [Investigation of prospective secondary mathematics teachers’ mathematical modelling skills]. Akdeniz Eğitim Araştırmaları Dergisi [Mediterranean Journal of Educational Research], 12(24), 294–312. https://doi.org/10.29329/mjer.2018.147.16
  • Doerr, H. M. (1997). Experiment, simulation and analysis: An integrated instructional approach to the concept of force. International Journal of Science Education, 19(3), 265–282. https://doi.org/10.1080/0950069970190302
  • Doerr, H. M., & English, L. D. (2003). A modeling perspective on students’ mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110–136. https://doi.org/10.2307/30034902
  • Doerr, H. M., Delmas, R., & Makar, K. (2017). A modeling approach to the development of students’ informal inferential reasoning. Statistics Education Research Journal, 16(2), 86–115. https://doi.org/10.52041/serj.v16i2.186
  • English, L. D. (2009). Promoting interdisciplinarity through mathematical modeling. ZDM Mathematics Education, 41(1–2), 161–181. https://doi.org/10.1007/s11858-008-0106-z
  • English, L. D., & Watters, J. J. (2004). Mathematical modeling in the early school years. Mathematics Education Research Journal, 16(16), 58–79. https://doi.org/10.1007/BF03217401
  • Erbas, A. K., Kertil, M., Çetinkaya, B., Cakiroglu, E., Alacaci, C., & Bas, S. (2014). Mathematical modeling in mathematics education: Basic concepts and approaches. Educational Sciences: Theory and Practice, 14(4), 1621–1627.
  • Erdoğan, F. (2019). İlköğretim matematik öğretmeni adaylarının matematiksel modelleme özyeterliklerinin belirlenmesi [Determination of mathematical modeling self-efficacy of pre-service elementary mathematics teachers]. Mersin Üniversitesi Eğitim Fakültesi Dergisi [Mersin University Journal of the Faculty of Education], 15(1), 118–130. https://doi.org/10.17860/mersinefd.480866
  • Ergene, Ö. (2019). Matematik öğretmeni adaylarının Riemann toplamlarını kullanarak modelleme yoluyla belirli integrali anlama durumlarının incelenmesi. [Investigation of pre-service mathematics teachers’ understanding of definite integral through modelling by using riemann sums]. (Unpublished doctoral dissertation). Marmara Üniversitesi.
  • Ergene, Ö., & Özdemir, A. Ş. (2020). Investigating pre-service elementary mathematics teachers’ perception of integral. Marmara University Atatürk Education Faculty Journal of Educational Sciences, 51(51), 155-176. https://doi.org/10.15285/maruaebd.622149
  • Erkek, Ö., & Işiksal-Bostan, M. (2015). The role of spatial anxiety, geometry self-efficacy and gender in predicting geometry achievement. Elementary Education Online, 14(1), 164–180. https://doi.org/10.17051/io.2015.18256
  • Ferri, R. B., & Blum, W. (2013). Insights into teachers’ unconscious behaviour in modeling contexts. In R. Lesh, P. Galbraith, C. Haines & A. Hurford (Eds.), Modeling Students’ Mathematical Modeling Competencies: ICTMA 13 (pp. 423–432). Springer. https://doi.org/10.1007/978-1-4419-0561-1_36
  • Frejd, P., & Ärlebäck, J. B. (2011). First results from a study investigating Swedish upper secondary students’ mathematical modeling competencies. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling (Vol. 1, pp. 407–416). Springer. https://doi.org/10.1007/978-94-007-0910-2_40
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modeling process. ZDM Mathematics Education, 38, 143–162. https://doi.org/10.1007/BF02655886
  • George, D., & Mallery, M. (2010). SPSS for windows step by step: A simple guide and reference, 17.0 update. Pearson.
  • Gravemeijer, K., & Stephan, M. (2002). Emergent models as an instructional design heuristic. In K. Gravemeijer, R. Lehrer, B. Oers & L. Verschaffel (Eds.), Symbolizing, modelling and tool use in mathematics education (pp. 145–169). The Netherlands.
  • Hacıömeroğlu, G., & Elmalı, Ö. (2021). Ortaokul öğrencilerinin matematik öz yeterlik düzeylerinin incelenmesi [Examining middle school students’ mathematics self-efficacy levels]. Journal of Computer and Education Research, 9(17), 353–379. https://doi.org/10.18009/jcer.866760
  • Hackett, G., & Betz, N. E. (1989). An exploration of the mathematics self efficacy/mathematics performance correspondence. Journal for Research Mathematics Education, 20(3), 261–273. https://doi.org/10.2307/749515
  • Harrison, G. A. (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31, 401–435. https://doi.org/10.1023/A:1013120312331
  • Hiller, S. E., Kitsantas, A., Cheema, J. E., & Poulou, M. (2022). Mathematics anxiety and self-efficacy as predictors of mathematics literacy. International Journal of Mathematical Education in Science and Technology, 53(8), 2133–2151. https://doi.org/10.1080/0020739X.2020.1868589
  • Holenstein, M., Bruckmaier, G., & Grob, A. (2022). How do self-efficacy and self-concept impact mathematical achievement? The case of mathematical modelling. British Journal of Educational Psychology, 92(1), 155–174. https://doi.org/10.1111/bjep.12443
  • Işıksal, M., & Aşkar, P. (2003). İlköğretim öğrencileri için matematik ve bilgisayar özyeterlik algısı ölçekleri [The scales of perceived mathematics and computer self-efficacy for elementary students]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi [Hacettepe University Journal of Education], 25, 109–118.
  • Kaiser, G., & Maaß, K. (2007). Modeling in lower secondary mathematics classroom-problems and opportunities. In W. Blum, P. Galbraith, H-W. Henn & M. Niss (Eds.), Modeling and Applications in Mathematics Education (Vol.10, pp. 99–108). Springer. https://doi.org/10.1007/978-0-387-29822-1_8
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in mathematics education. ZDM Mathematics Education, 38(3), 302–310. https://doi.org/10.1007/BF02652813
  • Karahan, M. & Ergene, Ö. (2023). Bitkisel ürün sigortası modelleme etkinliği bağlamında matematik öğretmen adaylarının modelleme süreçlerinin incelenmesi [Investigation of pre-service mathematics teachers’ modeling processes in the context of crop insurance model-eliciting activity]. Sakarya University Journal of Education Faculty, 23(1), 1-22. https://doi.org/10.53629/sakaefd.1271618
  • Karasar, N. (2006). Bilimsel araştırma yöntemi [Scientific research method]. Nobel Yayınları.
  • Kelly, G. J. (2014). Discourse practices in science learning and teaching. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Research on Science Education (Vol. 2, pp. 321–336). Taylor and Francis. https://doi.org/10.4324/9780203097267
  • Koyuncu, İ., Güzeller, C. O., & Akyüz, D. (2017). The development of a self-efficacy scale for mathematical modeling competencies. International Journal of Assessment Tools in Education, 4(1), 19–36. https://doi.org/10.21449/ijate.256552
  • Lau, W. W. F. (2022). Predicting pre-service mathematics teachers’ teaching and learning conceptions: The role of mathematical beliefs, mathematics self-efficacy, and mathematics teaching efficacy. International Journal of Science and Mathematics Education, 20(6), 1141–1160. https://doi.org/10.1007/s10763-021-10204-y
  • Lesh, R., & Lehler, R. (2003). Models and modeling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5(2&3), 109–129. https://doi.org/10.1080/10986065.2003.9679996
  • Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. M. Doerr (Eds.), Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching (pp. 3–33). Lawrence Erlbaum.
  • Ludwig, M., & Xu, B. (2010). A comparative study of modeling competencies among Chinese and German students. Journal für Mathematik-Didaktik, 31(1), 77–97. https://doi.org/10.1007/s13138-010-0005-z
  • Maaß, K. (2006). What are modeling competencies? ZDM Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • Mehraein, S., & Gatabi, A. R. (2014). Gender and mathematical modeling competency: primary students’ performance and their attitude. Procedia-Social and Behavioral Sciences, 128, 198–203.
  • Ministry of National Education (MoNE) (2018). Mathematics curriculum (Primary and middle school Grades 1, 2, 3, 4, 5, 6, 7 and 8). MoNE.
  • Muşlu, M., & Çiltaş, A. (2016). The impact of the mathematical modeling method at teaching the subject of the process on natural numbers on the student success. Journal of Bayburt Education Faculty, 11(2), 329–343.
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. NCTM.
  • Niss, M. (1989). Aims and scope of applications and modeling in mathematics curricula. In W. Blum, J. S. Berry, R. Biehler, I. Huntley, G. Kaiser-Messmer & L. Profke (Eds.), Applications and Modeling in Learning and Teaching Mathematics (pp. 22–31). Ellis Horwood.
  • Özer, A. Ö., & Bukova Guzel, E. (2016). Öğrenci, öğretmen adayı ve öğretmenlerin bakış açısından matematiksel modelleme problemleri [Mathematical modelling problems from the viewpoint of students, prospective teachers and teachers]. Manisa Celal Bayar Üniversitesi Eğitim Fakültesi Dergisi [Manisa Celal Bayar University Journal of the Faculty of Education], 4(1), 57–73.
  • Özgen, K., & Şeker, İ. (2021). 6. sınıf öğrencilerinin farklı matematiksel modelleme problemlerindeki beceri gelişimlerinin incelenmesi [Investigation of the skill developments of 6th grade students in different mathematical modeling]. Milli Eğitim Dergisi [JAournal of Millî Eğitim], 50(230), 329–358. https://doi.org/10.37669/milliegitim.680760
  • Pajares, F. (2005). Gender differences in mathematics self-efficacy beliefs. In A. Gallagher & J. Kaufman (Eds.), Mind Gap: Gender Differences in Mathematics (pp. 294–315). Cambridge University Press.
  • Pajares, F., & Miller, D. M. (1997). Mathematics self-efficacy and mathematics problem solving: Implications of using different forms of assessments. Journal of Experimental Education, 65(3), 213–228.
  • Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193–203. https://doi.org/10.1037/0022-0663.86.2.193
  • Pajeres, F., & Kranzler, J. H. (1995). An exploraty factor analysis of the Mathematics Self–efficacy Scale–Revised (MSES-R). Measurement and Evaluation in Counseling and Development, 29, 215–228. https://doi.org/10.1080/07481756.1997.12068906
  • Perry, D. R., & Steck, A. K. (2015). Increasing student engagement, self-efficacy, and meta-cognitive self-regulation in the high school geometry classroom: Do iPads help?. Computers in the Schools, 32(2), 122–143. https://doi.org/10.1080/07380569.2015.1036650
  • Pollak, H. (1979). The interaction between mathematics and other school subjects. New Trends in Mathematics Teaching. UNESCO.
  • Potvin, P., & Hasni, A. (2014). Analysis of the decline in interest towards school science and technology from grades 5 through 11. Journal of Science Education and Technology, 23(6), 784–802. https://doi.org/10.1007/s10956-014-9512-x
  • Richardson, J. T. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135-147. https://doi.org/10.1016/j.edurev.2010.12.001
  • Schöber, C., Schütte, K., Köller, O., McElvany, N., & Gebauer, M. M. (2018). Reciprocal effects between self-efficacy and achievement in mathematics and reading. Learning and Individual Differences, 63, 1–11. https://doi.org/10.1016/j.lindif.2018.01.008
  • Siller, H. S., & Kuntze, S. (2011). Modeling as a big idea in mathematics: Knowledge and views of pre-service and in-service teachers. Journal of Mathematical Modeling and Application, 1(6), 33–39.
  • Simamora, R. E., & Saragih, S. (2019). Improving students’ mathematical problem solving ability and self-efficacy through guided discovery learning in local culture context. International Electronic Journal of Mathematics Education, 14(1), 61–72. https://doi.org/10.12973/iejme/3966
  • Smith, J. P., di Sessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: a constructivist analysis of knowledge in transition. The Journal of Learning Sciences, 3(2), 115–163. https://doi.org/10.1207/s15327809jls0302_1
  • Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using multivariate statistics. Pearson.
  • Tekin Dede, A. (2015). Matematik derslerinde öğrencilerin modelleme yeterliklerinin geliştirilmesi: Bir eylem araştırması [Developing students’ modelling competencies in mathematics lessons: An action research study] [Unpublished doctoral dissertation]. Dokuz Eylül Üniversitesi.
  • Tella, A. (2011). An assessment of mathematics self-efficacy of secondary school students in Osun State, Nigeria. IFE Psychologia: An International Journal, 19(1), 430–440. https://doi.org/10.4314/ifep.v19i1.64611
  • Uzar, F. N. (2010). Exploring sources of middle school students’ mathematics self-efficacy with respect to different variables [Unpublished master’s thesis]. Hacettepe Üniversitesi.
  • Uzun H., Ergene, Ö., & Masal, E. (2023). İlköğretim beşinci sınıf öğrencilerinin matematiksel modelleme süreçlerinin incelenmesi: Matematik Köyü’ne gidiyoruz etkinliği [Investigation of mathematical modelling processes of fifth grade students: We are going to the Mathematics Village model-eliciting activity]. Kocaeli University Journal of Education, 6(2), 494-521. http://doi.org/10.33400/kuje.1316782
  • Yel, Ü. (2021). Matematik öğretmen adaylarının matematiksel modelleme öz yeterliklerinin ve bilgi işlemsel düşünme becerilerinin incelenmesi [Examination of pre-service mathematics teachers’ mathematics modeling self-efficacy and computational thinking skills] [Unpublished master’s thesis]. Balıkesir Üniversitesi.
  • Yenilmez, K., & Yıldız, Ş. (2019). Matematiksel modelleme ile ilgili lisansüstü tezlerin tematik içerik analizi [Thematic content analysis of graduate theses related to mathematical modelling]. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi [Eskişehir Osmangazi University Journal of Social Sciences], 20, 1–22. https://doi.org/10.17494/ogusbd.548180
  • Yıldırım, Z., & Işık, A. (2015). Matematiksel modelleme etkinliklerinin 5. sınıf öğrencilerinin matematik dersindeki akademik başarılarına etkisi [The effects of mathematical modelling activities to academic achievement of the fifth grade students in mathematics course]. Kastamonu Eğitim Dergisi [Kastamonu Education Journal], 23(2), 581–600.
  • Yıldız, E., & Yetim, S. (2024). Mathematical modeling measuring self-efficacy: A scale adaptation study. International Journal of Educational Studies in Mathematics, 11(1), 23–38. https://doi.org/10.17278/ijesim.1438228
  • Zuya, H. E., Kwalat, S. K., & Attah, B. G. (2016). Pre-service teachers’ mathematics self-efficacy and mathematics teaching self-efficacy. Journal of Education and Practice, 7(14), 93–98.
Year 2024, Volume: 11 Issue: 4, 99 - 114, 07.07.2024
https://doi.org/10.17275/per.24.51.11.4

Abstract

References

  • Adal, A. A., & Yavuz, İ. (2017). The relationship between mathematics self-efficacy and mathematics anxiety levels of middle school students. International Journal of Field Education, 3(1), 20–41.
  • Albayrak, H. B., & Tarım, K. (2022). Sınıf öğretmeni adaylarının matematiksel modelleme yeterlikleri: Okulda zaman problemi [Mathematical modelling competencies of pre-service primary school teachers: The time at school]. Eğitimde Kuram ve Uygulama [Journal of Theory and Practice in Education], 18(2), 95–112. https://doi.org/10.17244/eku.1163414
  • Artino, A. R. (2012). Academic self-efficacy: from educational theory to instructional practice. Perspectives on Medical Education, 1, 76–85. https://doi.org/10.1007/s40037-012-0012-5
  • Aztekin, S., & Taşpınar Şener, Z. (2015). Türkiye’de matematik eğitimi alanındaki matematiksel modelleme araştırmalarının içerik analizi: Bir meta-sentez çalışması [The content analysis of mathematical modelling studies in Turkey: A meta-synthesis study]. Eğitim ve Bilim [Education and Science], 40(178), 139–161. http://dx.doi.org/10.15390/EB.2015.4125
  • Bandura, A. (1997). Self-efficacy: The exercise of control. W.H. Freeman.
  • Berry, J., & Davies, A. (1996). Written reports. In C. R. Haines & S. Dunthorne (Eds.), Mathematics learning and assessment: Sharing innovative practices. Arnold.
  • Berry, J., & Houston, K. (1995). Mathematical modeling. J. W. Arrowsmith Ltd.
  • Bilgili, S., & Çiltaş, A. (2019). Similarity and differences in visuals in mathematical modeling of primary and secondary mathematics teachers. International Journal of Eurasia Social Sciences, 10(35), 334–353.
  • Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modeling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139. https://doi.org/10.1093/teamat/22.3.123
  • Blum, W. (2011). Can modeling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 15–30). Springer. https://doi.org/10.1007/978-94-007-0910-2_3
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modeling: Can it be taught and learnt? Journal of Mathematical Modeling and Application, 1(1), 45–58.
  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modeling problems. Mathematical modeling: Education, engineering and economics, 222–231. https://doi.org/10.1533/9780857099419.5.221
  • Boaler, J. (2001). Mathematical modeling and new theories of learning. Teaching Mathematics and Its Applications: International Journal of the IMA, 20(3), 121–128. https://doi.org/10.1093/teamat/20.3.121
  • Bong, M., & Clark, R. E. (1999). Comparison between self-concept and self-efficacy in academic motivation research. Educational Psychologist, 34(3), 139–153. https://doi.org/10.1207/s15326985ep3403_1
  • Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM Mathematics Education, 38, 86–95. https://doi.org/10.1007/BF02655883
  • Borromeo-Ferri, R. (2007). Personal experiences and extra-mathematical knowledge as an influence factor on modeling routes of pupils. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (p. 2080–2089). Zypern.
  • Borromeo-Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Springer. https://doi.org/10.1007/978-3-319-68072-9
  • Brady, C. (2018). Modeling and the representational imagination. ZDM Mathematics Education, 50, 45–59. https://doi.org/10.1007/s11858-018-0926-4
  • Cooper, S. E., & Robinson, D. A. G. (1991). The relationship of mathematics selfefficacy beliefs, mathematics anxiety and performances. Measurement and Evaluation in Counseling and Development, 24(1), 4–11.
  • Dede, Y., Akçakın, V., & Kaya, G. (2018). Examining mathematical modeling competencies of pre-service middle school mathematics teachers by gender: Multidimensional item response theory. Adıyaman University Journal of Educational Sciences, 8(2), 150–169. https://doi.org/10.17984/adyuebd.456626
  • Deniz, D., & Akgün, L. (2018). İlköğretim matematik öğretmeni adaylarının matematiksel modelleme becerilerinin incelenmesi [Investigation of prospective secondary mathematics teachers’ mathematical modelling skills]. Akdeniz Eğitim Araştırmaları Dergisi [Mediterranean Journal of Educational Research], 12(24), 294–312. https://doi.org/10.29329/mjer.2018.147.16
  • Doerr, H. M. (1997). Experiment, simulation and analysis: An integrated instructional approach to the concept of force. International Journal of Science Education, 19(3), 265–282. https://doi.org/10.1080/0950069970190302
  • Doerr, H. M., & English, L. D. (2003). A modeling perspective on students’ mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110–136. https://doi.org/10.2307/30034902
  • Doerr, H. M., Delmas, R., & Makar, K. (2017). A modeling approach to the development of students’ informal inferential reasoning. Statistics Education Research Journal, 16(2), 86–115. https://doi.org/10.52041/serj.v16i2.186
  • English, L. D. (2009). Promoting interdisciplinarity through mathematical modeling. ZDM Mathematics Education, 41(1–2), 161–181. https://doi.org/10.1007/s11858-008-0106-z
  • English, L. D., & Watters, J. J. (2004). Mathematical modeling in the early school years. Mathematics Education Research Journal, 16(16), 58–79. https://doi.org/10.1007/BF03217401
  • Erbas, A. K., Kertil, M., Çetinkaya, B., Cakiroglu, E., Alacaci, C., & Bas, S. (2014). Mathematical modeling in mathematics education: Basic concepts and approaches. Educational Sciences: Theory and Practice, 14(4), 1621–1627.
  • Erdoğan, F. (2019). İlköğretim matematik öğretmeni adaylarının matematiksel modelleme özyeterliklerinin belirlenmesi [Determination of mathematical modeling self-efficacy of pre-service elementary mathematics teachers]. Mersin Üniversitesi Eğitim Fakültesi Dergisi [Mersin University Journal of the Faculty of Education], 15(1), 118–130. https://doi.org/10.17860/mersinefd.480866
  • Ergene, Ö. (2019). Matematik öğretmeni adaylarının Riemann toplamlarını kullanarak modelleme yoluyla belirli integrali anlama durumlarının incelenmesi. [Investigation of pre-service mathematics teachers’ understanding of definite integral through modelling by using riemann sums]. (Unpublished doctoral dissertation). Marmara Üniversitesi.
  • Ergene, Ö., & Özdemir, A. Ş. (2020). Investigating pre-service elementary mathematics teachers’ perception of integral. Marmara University Atatürk Education Faculty Journal of Educational Sciences, 51(51), 155-176. https://doi.org/10.15285/maruaebd.622149
  • Erkek, Ö., & Işiksal-Bostan, M. (2015). The role of spatial anxiety, geometry self-efficacy and gender in predicting geometry achievement. Elementary Education Online, 14(1), 164–180. https://doi.org/10.17051/io.2015.18256
  • Ferri, R. B., & Blum, W. (2013). Insights into teachers’ unconscious behaviour in modeling contexts. In R. Lesh, P. Galbraith, C. Haines & A. Hurford (Eds.), Modeling Students’ Mathematical Modeling Competencies: ICTMA 13 (pp. 423–432). Springer. https://doi.org/10.1007/978-1-4419-0561-1_36
  • Frejd, P., & Ärlebäck, J. B. (2011). First results from a study investigating Swedish upper secondary students’ mathematical modeling competencies. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling (Vol. 1, pp. 407–416). Springer. https://doi.org/10.1007/978-94-007-0910-2_40
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modeling process. ZDM Mathematics Education, 38, 143–162. https://doi.org/10.1007/BF02655886
  • George, D., & Mallery, M. (2010). SPSS for windows step by step: A simple guide and reference, 17.0 update. Pearson.
  • Gravemeijer, K., & Stephan, M. (2002). Emergent models as an instructional design heuristic. In K. Gravemeijer, R. Lehrer, B. Oers & L. Verschaffel (Eds.), Symbolizing, modelling and tool use in mathematics education (pp. 145–169). The Netherlands.
  • Hacıömeroğlu, G., & Elmalı, Ö. (2021). Ortaokul öğrencilerinin matematik öz yeterlik düzeylerinin incelenmesi [Examining middle school students’ mathematics self-efficacy levels]. Journal of Computer and Education Research, 9(17), 353–379. https://doi.org/10.18009/jcer.866760
  • Hackett, G., & Betz, N. E. (1989). An exploration of the mathematics self efficacy/mathematics performance correspondence. Journal for Research Mathematics Education, 20(3), 261–273. https://doi.org/10.2307/749515
  • Harrison, G. A. (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31, 401–435. https://doi.org/10.1023/A:1013120312331
  • Hiller, S. E., Kitsantas, A., Cheema, J. E., & Poulou, M. (2022). Mathematics anxiety and self-efficacy as predictors of mathematics literacy. International Journal of Mathematical Education in Science and Technology, 53(8), 2133–2151. https://doi.org/10.1080/0020739X.2020.1868589
  • Holenstein, M., Bruckmaier, G., & Grob, A. (2022). How do self-efficacy and self-concept impact mathematical achievement? The case of mathematical modelling. British Journal of Educational Psychology, 92(1), 155–174. https://doi.org/10.1111/bjep.12443
  • Işıksal, M., & Aşkar, P. (2003). İlköğretim öğrencileri için matematik ve bilgisayar özyeterlik algısı ölçekleri [The scales of perceived mathematics and computer self-efficacy for elementary students]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi [Hacettepe University Journal of Education], 25, 109–118.
  • Kaiser, G., & Maaß, K. (2007). Modeling in lower secondary mathematics classroom-problems and opportunities. In W. Blum, P. Galbraith, H-W. Henn & M. Niss (Eds.), Modeling and Applications in Mathematics Education (Vol.10, pp. 99–108). Springer. https://doi.org/10.1007/978-0-387-29822-1_8
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in mathematics education. ZDM Mathematics Education, 38(3), 302–310. https://doi.org/10.1007/BF02652813
  • Karahan, M. & Ergene, Ö. (2023). Bitkisel ürün sigortası modelleme etkinliği bağlamında matematik öğretmen adaylarının modelleme süreçlerinin incelenmesi [Investigation of pre-service mathematics teachers’ modeling processes in the context of crop insurance model-eliciting activity]. Sakarya University Journal of Education Faculty, 23(1), 1-22. https://doi.org/10.53629/sakaefd.1271618
  • Karasar, N. (2006). Bilimsel araştırma yöntemi [Scientific research method]. Nobel Yayınları.
  • Kelly, G. J. (2014). Discourse practices in science learning and teaching. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Research on Science Education (Vol. 2, pp. 321–336). Taylor and Francis. https://doi.org/10.4324/9780203097267
  • Koyuncu, İ., Güzeller, C. O., & Akyüz, D. (2017). The development of a self-efficacy scale for mathematical modeling competencies. International Journal of Assessment Tools in Education, 4(1), 19–36. https://doi.org/10.21449/ijate.256552
  • Lau, W. W. F. (2022). Predicting pre-service mathematics teachers’ teaching and learning conceptions: The role of mathematical beliefs, mathematics self-efficacy, and mathematics teaching efficacy. International Journal of Science and Mathematics Education, 20(6), 1141–1160. https://doi.org/10.1007/s10763-021-10204-y
  • Lesh, R., & Lehler, R. (2003). Models and modeling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5(2&3), 109–129. https://doi.org/10.1080/10986065.2003.9679996
  • Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. M. Doerr (Eds.), Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching (pp. 3–33). Lawrence Erlbaum.
  • Ludwig, M., & Xu, B. (2010). A comparative study of modeling competencies among Chinese and German students. Journal für Mathematik-Didaktik, 31(1), 77–97. https://doi.org/10.1007/s13138-010-0005-z
  • Maaß, K. (2006). What are modeling competencies? ZDM Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • Mehraein, S., & Gatabi, A. R. (2014). Gender and mathematical modeling competency: primary students’ performance and their attitude. Procedia-Social and Behavioral Sciences, 128, 198–203.
  • Ministry of National Education (MoNE) (2018). Mathematics curriculum (Primary and middle school Grades 1, 2, 3, 4, 5, 6, 7 and 8). MoNE.
  • Muşlu, M., & Çiltaş, A. (2016). The impact of the mathematical modeling method at teaching the subject of the process on natural numbers on the student success. Journal of Bayburt Education Faculty, 11(2), 329–343.
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. NCTM.
  • Niss, M. (1989). Aims and scope of applications and modeling in mathematics curricula. In W. Blum, J. S. Berry, R. Biehler, I. Huntley, G. Kaiser-Messmer & L. Profke (Eds.), Applications and Modeling in Learning and Teaching Mathematics (pp. 22–31). Ellis Horwood.
  • Özer, A. Ö., & Bukova Guzel, E. (2016). Öğrenci, öğretmen adayı ve öğretmenlerin bakış açısından matematiksel modelleme problemleri [Mathematical modelling problems from the viewpoint of students, prospective teachers and teachers]. Manisa Celal Bayar Üniversitesi Eğitim Fakültesi Dergisi [Manisa Celal Bayar University Journal of the Faculty of Education], 4(1), 57–73.
  • Özgen, K., & Şeker, İ. (2021). 6. sınıf öğrencilerinin farklı matematiksel modelleme problemlerindeki beceri gelişimlerinin incelenmesi [Investigation of the skill developments of 6th grade students in different mathematical modeling]. Milli Eğitim Dergisi [JAournal of Millî Eğitim], 50(230), 329–358. https://doi.org/10.37669/milliegitim.680760
  • Pajares, F. (2005). Gender differences in mathematics self-efficacy beliefs. In A. Gallagher & J. Kaufman (Eds.), Mind Gap: Gender Differences in Mathematics (pp. 294–315). Cambridge University Press.
  • Pajares, F., & Miller, D. M. (1997). Mathematics self-efficacy and mathematics problem solving: Implications of using different forms of assessments. Journal of Experimental Education, 65(3), 213–228.
  • Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193–203. https://doi.org/10.1037/0022-0663.86.2.193
  • Pajeres, F., & Kranzler, J. H. (1995). An exploraty factor analysis of the Mathematics Self–efficacy Scale–Revised (MSES-R). Measurement and Evaluation in Counseling and Development, 29, 215–228. https://doi.org/10.1080/07481756.1997.12068906
  • Perry, D. R., & Steck, A. K. (2015). Increasing student engagement, self-efficacy, and meta-cognitive self-regulation in the high school geometry classroom: Do iPads help?. Computers in the Schools, 32(2), 122–143. https://doi.org/10.1080/07380569.2015.1036650
  • Pollak, H. (1979). The interaction between mathematics and other school subjects. New Trends in Mathematics Teaching. UNESCO.
  • Potvin, P., & Hasni, A. (2014). Analysis of the decline in interest towards school science and technology from grades 5 through 11. Journal of Science Education and Technology, 23(6), 784–802. https://doi.org/10.1007/s10956-014-9512-x
  • Richardson, J. T. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135-147. https://doi.org/10.1016/j.edurev.2010.12.001
  • Schöber, C., Schütte, K., Köller, O., McElvany, N., & Gebauer, M. M. (2018). Reciprocal effects between self-efficacy and achievement in mathematics and reading. Learning and Individual Differences, 63, 1–11. https://doi.org/10.1016/j.lindif.2018.01.008
  • Siller, H. S., & Kuntze, S. (2011). Modeling as a big idea in mathematics: Knowledge and views of pre-service and in-service teachers. Journal of Mathematical Modeling and Application, 1(6), 33–39.
  • Simamora, R. E., & Saragih, S. (2019). Improving students’ mathematical problem solving ability and self-efficacy through guided discovery learning in local culture context. International Electronic Journal of Mathematics Education, 14(1), 61–72. https://doi.org/10.12973/iejme/3966
  • Smith, J. P., di Sessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: a constructivist analysis of knowledge in transition. The Journal of Learning Sciences, 3(2), 115–163. https://doi.org/10.1207/s15327809jls0302_1
  • Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using multivariate statistics. Pearson.
  • Tekin Dede, A. (2015). Matematik derslerinde öğrencilerin modelleme yeterliklerinin geliştirilmesi: Bir eylem araştırması [Developing students’ modelling competencies in mathematics lessons: An action research study] [Unpublished doctoral dissertation]. Dokuz Eylül Üniversitesi.
  • Tella, A. (2011). An assessment of mathematics self-efficacy of secondary school students in Osun State, Nigeria. IFE Psychologia: An International Journal, 19(1), 430–440. https://doi.org/10.4314/ifep.v19i1.64611
  • Uzar, F. N. (2010). Exploring sources of middle school students’ mathematics self-efficacy with respect to different variables [Unpublished master’s thesis]. Hacettepe Üniversitesi.
  • Uzun H., Ergene, Ö., & Masal, E. (2023). İlköğretim beşinci sınıf öğrencilerinin matematiksel modelleme süreçlerinin incelenmesi: Matematik Köyü’ne gidiyoruz etkinliği [Investigation of mathematical modelling processes of fifth grade students: We are going to the Mathematics Village model-eliciting activity]. Kocaeli University Journal of Education, 6(2), 494-521. http://doi.org/10.33400/kuje.1316782
  • Yel, Ü. (2021). Matematik öğretmen adaylarının matematiksel modelleme öz yeterliklerinin ve bilgi işlemsel düşünme becerilerinin incelenmesi [Examination of pre-service mathematics teachers’ mathematics modeling self-efficacy and computational thinking skills] [Unpublished master’s thesis]. Balıkesir Üniversitesi.
  • Yenilmez, K., & Yıldız, Ş. (2019). Matematiksel modelleme ile ilgili lisansüstü tezlerin tematik içerik analizi [Thematic content analysis of graduate theses related to mathematical modelling]. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi [Eskişehir Osmangazi University Journal of Social Sciences], 20, 1–22. https://doi.org/10.17494/ogusbd.548180
  • Yıldırım, Z., & Işık, A. (2015). Matematiksel modelleme etkinliklerinin 5. sınıf öğrencilerinin matematik dersindeki akademik başarılarına etkisi [The effects of mathematical modelling activities to academic achievement of the fifth grade students in mathematics course]. Kastamonu Eğitim Dergisi [Kastamonu Education Journal], 23(2), 581–600.
  • Yıldız, E., & Yetim, S. (2024). Mathematical modeling measuring self-efficacy: A scale adaptation study. International Journal of Educational Studies in Mathematics, 11(1), 23–38. https://doi.org/10.17278/ijesim.1438228
  • Zuya, H. E., Kwalat, S. K., & Attah, B. G. (2016). Pre-service teachers’ mathematics self-efficacy and mathematics teaching self-efficacy. Journal of Education and Practice, 7(14), 93–98.
There are 82 citations in total.

Details

Primary Language English
Subjects Specialist Studies in Education (Other)
Journal Section Research Articles
Authors

Büşra Çaylan Ergene 0000-0002-5567-6791

Özkan Ergene 0000-0001-5119-2813

Early Pub Date July 14, 2024
Publication Date July 7, 2024
Submission Date May 23, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Çaylan Ergene, B., & Ergene, Ö. (2024). Mathematical Modeling Self-Efficacy of Middle School and High School Students. Participatory Educational Research, 11(4), 99-114. https://doi.org/10.17275/per.24.51.11.4