Research Article
BibTex RIS Cite
Year 2023, , 17 - 36, 18.07.2023
https://doi.org/10.47086/pims.1214055

Abstract

References

  • M. Caldas and S. Jafari and M. M. Kov´ar, Some Properties of θ-Open Sets, Divulgaciones Matem´aticas 12(2) (2004) 161-169.
  • ´A. Cs´asz´ar, Further Remarks on the Formula for γ-Interior, Acta Math. Hungar., 113(4) (2006) 325-332.
  • ´A. Cs´asz´ar, Generalized Open Sets in Generalized Topologies, Acta Math. Hungar. 106(1-2) (2005) 53-66.
  • ´A. Cs´asz´ar, On the γ-Interior and γ-Closure of a Set, Acta Math. Hungar. 80 (1998) 89-93.
  • ´A. Cs´asz´ar, Generalized Open Sets, Acta Math. Hungar. 75(1-2) (1997) 65-87.
  • A. Gupta and R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, Math. Appl. 6 (2017) 11-20.
  • S. -M. Jung and D. Nam, Some Properties of Interior and Closure in General Topology, Mathematics (MDPI Journal) 7(624) (2019) 1-10.
  • N. Kalaivani, Operation Approaches on α-β-Open Sets in Topological Spaces, Int. Journal of Math. Analysis 7(10) (2013) 491-498.
  • N. Levine, Generalized Closed Set in Topological Spaces, Rend. Circ. Mat. Palermo 19 (1970) 89-96.
  • N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly 70 (1963) 19-41.
  • N. Levine, On the Commutivity of the Closure and Interior Operators in Topological Spaces, Amer. Math. Monthly 68(5) (1961) 474-477.
  • T. S. I. Mary and A. Gowri, The Role of q-Sets in Topology, International Journal of Mathematics Research 8(1) (2016) 1-10.
  • W. Dungthaisong and C. Boonpok, Generalized Closed Sets in Bigeneralized Topological Spaces, Int. Journal of Math. Analysis 5(24) (2011) 1175-1184.
  • A. Gupta and R. V. Sarma, PS-Regular Sets in Topology and Generalized Topology, Journal of Mathematics 2014(1-6) (2014) 1-6.
  • M. I. Khodabocus and N. -U. -H. Sookia, Theory of Generalized Sets in Generalized Topological Spaces, Journal of New Theory 36 (2021) 18-38.
  • M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius, R´eduit, Mauritius (2020) 1-311 (i.-xxxvi.).
  • W. K. Min and Y. K. Kim, Quasi Generalized Open Sets and Quasi Generalized Continuity on Bigeneralized Topological Spaces, Honam Mathematical J. 32(4) (2010) 619-624.
  • W. K. Min, Some Results on Generalized Topological Spaces and Generalized Systems, Acta. Math. Hungar. 108(1-2) (2005) 171-181.
  • J. M. Mustafa, On Binary Generalized Topological Spaces, General Letters in Mathematics 2(3) (2017) 111-116.
  • D. Andrijevi´c, On b-Open Sets, Mat. Vesnik 48 (1996) 59-64.
  • J. Dixmier, General Topology, Springer Verlag New York Inc. 1 (1984) X-141.
  • O. Nj˚astad, On Some Classes of Nearly Open Sets, Pacific J. of Math. 15(3) (1965) 961-970.
  • S. Willard, General Topology, Addison-Wesley Publishing Company, Reading, Massachusetts 18 (1970) 369.
  • A. Al-Omari and M. S. M. Noorani, On b-Closed Sets, Bull. Malays. Sci. Soc. 32(1) (2009) 19-30.
  • J. Dontchev and H. Maki, On θ-Generalized Closed Sets, Internat. J. Math. & Math. Sci. 22(2) (1999) 239-249.
  • C. Kuratowski, Sur l’Op´eration A¯ de l’Analyse Situs, Fund. Math. 3 (1922) 182-199.
  • J. F. Z. Camargo, Some Properties of Beta Hat Generalized Closed Set in Generalized Topological Spaces, International Journal for Research in Mathematics and Statistics 5(3) (2019) 1-8.
  • W. K. Min, Mixed θ-Continuity on Generalized Topological Spaces, Mathematical and Computer Modelling 54(11-12) (2011) 2597-2601.
  • V. Pankajam, On the Properties of δ-Interior and δ-Closure in Generalized Topological Spaces, International Journal for Research in Mathematical Archive 2(8) (2011) 1321-1332.
  • D. Saravanakumar and N. Kalaivani and G. S. S. Krishnan, On ˜μ-Open Sets in Generalized Topological Spaces, Malaya J. Mat. 3(3) (2015) 268-276.
  • B. K. Tyagi and R. Choudhary, On Generalized Closure Operators in Generalized Topological Spaces, International Journal of Computer Applications 82(15) (2013) 1-5.
  • W. K. Min, A Note on θ (g, g′)-Continuity in Generalized Topological Spaces, Acta. Math. Hungar. 125(4) (2009) 387-393.
  • W. K. Min, Mixed Weak Continuity on Generalized Topological Spaces, Acta. Math. Hungar. 132(4) (2011) 339-347.
  • C. Cao and J. Yan and W. Wang and B. Wang, Some Generalized Continuities Functions on Generalized Topological Spaces, Hacettepe Journal of Mathematics and Statistics 42(2) (2013) 159-163.
  • S. Srija and D. Jayanthi, gu-Semi Closed Sets in Generalized Topological Spaces, International Journal of Scientific Engineering and Applied Science (IJSEAS) 2(4) (2016) 292-294.
  • C. Boonpok, (ζ, δ (μ))-Closed Sets in Strong Generalized Topological Spaces, Cogent Mathematics & Statistics 5(1517428) (2018) 1-45.
  • K. Kannan and N. Nagaveni, On ˆβ-Generalized Closed Sets and Open Sets in Topological Spaces, Int. Journal of Math. Analysis 6(57) (2012) 2819-2828.
  • ´A. Cs´asz´ar, Generalized Topology, Generalized Continuity, Acta Math. Hungar. 96(4) (2002) 351-357.
  • V. Pavlovi´c and A. S. Cvetkovi´c, On Generalized Topologies arising from Mappings, Vesnik 38(3) (2012) 553-565.
  • ´A. Cs´asz´ar, Remarks on Quasi-Topologies, Acta Math. Hungar. 119(1-2) (2008) 197-200.
  • S. Bayhan and A. Kanibir and I. L. Reilly, On Functions between Generalized Topological Spaces, Appl. Gen. Topol. 14(2) (2013) 195-203.
  • C. Boonpok, On Generalized Continuous Maps in ˇ Cech Closure Spaces, General Mathematics 19(3) (2011) 3-10.
  • A. S. Mashhour and A. A. Allam and F. S. Mahmoud and F. H. Khedr, On Supratopological Spaces, Indian J. Pure. Appl. Math. 14(4) (1983) 502-510.
  • M. Caldas and S. Jafari and R. K. Saraf, Semi-θ-Open Sets and New Classes of Maps, Bulletin of the Iranian Mathematical Society 31(2) (2005) 37-52.
  • J. Dontchev, On Some Separation Axioms Associated with the α-Topology, 18 (1997) 31-35.
  • Y. B. Jun and S. W. Jeong and H. J. Lee and J. W. Lee, Applications of Pre-Open Sets, Applied General Topology, Universidad Polit´ecnica de Valencia 9(2) (2008) 213-228.
  • On Generalized Closed Sets in a Generalized Topological Spaces, CUBO A Mathematical Journal 18(1) (2016) 27-45.

Generalized Topological Operator Theory in Generalized Topological Spaces: Part I. Generalized Interior and Generalized Closure

Year 2023, , 17 - 36, 18.07.2023
https://doi.org/10.47086/pims.1214055

Abstract

In a generalized topological space Tg = (Ω, Tg ) (Tg -space), various ordinary topological operators (Tg -operators), namely, int_g, cl_g, ext_g, fr_g, der_g,
cod_g : P (Ω) −→ P (Ω) (T_g-interior, T_g-closure, T_g-exterior, T_g-frontier, T_g-derived, T_g-coderived operators), are defined in terms of ordinary sets (T_g-sets). Accordingly, generalized T_g-operators (g-T_g-operators), namely, g-Int_g, g-Cl_g, g-Ext_g, g-Fr_g, g-Der_g, g-Cod_g : P (Ω) −→ P (Ω) (g-T_g-interior,
g-T_g-closure, g-T_g-exterior, g-T_g-frontier, g-T_g-derived, g-T_g-coderived operators) may be defined in terms of generalized T_g-sets (g-T_g-sets), thereby making g-T_g-operators theory in T_g-spaces an interesting subject of inquiry. In this paper, we present the definitions and the essential properties of the
g-T_g-interior and g-T_g-closure operators g-Int_g , g-Cl_g : P (Ω) −→ P (Ω), respectively, in terms of a new class of g-T_g-sets which we studied earlier. The outstanding results to which the study has led to are: Firstly, (g-Int_g, g-Cl_g) : P (Ω) × P (Ω) −→ P (Ω) × P (Ω) is (Ω, ∅)-grounded, (expansive, non-expansive),
(idempotent, idempotent) and (∩, ∪)-additive. Secondly, g-Int_g : P (Ω) −→ P (Ω) is finer (or, larger, stronger than int_g : P (Ω) −→ P (Ω) and g-Cl_g : P (Ω) −→ P (Ω) is coarser (or, smaller, weaker) than cl_g : P (Ω) −→ P (Ω). The elements supporting these facts are reported therein as sources of inspiration for more generalized
operations.

References

  • M. Caldas and S. Jafari and M. M. Kov´ar, Some Properties of θ-Open Sets, Divulgaciones Matem´aticas 12(2) (2004) 161-169.
  • ´A. Cs´asz´ar, Further Remarks on the Formula for γ-Interior, Acta Math. Hungar., 113(4) (2006) 325-332.
  • ´A. Cs´asz´ar, Generalized Open Sets in Generalized Topologies, Acta Math. Hungar. 106(1-2) (2005) 53-66.
  • ´A. Cs´asz´ar, On the γ-Interior and γ-Closure of a Set, Acta Math. Hungar. 80 (1998) 89-93.
  • ´A. Cs´asz´ar, Generalized Open Sets, Acta Math. Hungar. 75(1-2) (1997) 65-87.
  • A. Gupta and R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, Math. Appl. 6 (2017) 11-20.
  • S. -M. Jung and D. Nam, Some Properties of Interior and Closure in General Topology, Mathematics (MDPI Journal) 7(624) (2019) 1-10.
  • N. Kalaivani, Operation Approaches on α-β-Open Sets in Topological Spaces, Int. Journal of Math. Analysis 7(10) (2013) 491-498.
  • N. Levine, Generalized Closed Set in Topological Spaces, Rend. Circ. Mat. Palermo 19 (1970) 89-96.
  • N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly 70 (1963) 19-41.
  • N. Levine, On the Commutivity of the Closure and Interior Operators in Topological Spaces, Amer. Math. Monthly 68(5) (1961) 474-477.
  • T. S. I. Mary and A. Gowri, The Role of q-Sets in Topology, International Journal of Mathematics Research 8(1) (2016) 1-10.
  • W. Dungthaisong and C. Boonpok, Generalized Closed Sets in Bigeneralized Topological Spaces, Int. Journal of Math. Analysis 5(24) (2011) 1175-1184.
  • A. Gupta and R. V. Sarma, PS-Regular Sets in Topology and Generalized Topology, Journal of Mathematics 2014(1-6) (2014) 1-6.
  • M. I. Khodabocus and N. -U. -H. Sookia, Theory of Generalized Sets in Generalized Topological Spaces, Journal of New Theory 36 (2021) 18-38.
  • M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius, R´eduit, Mauritius (2020) 1-311 (i.-xxxvi.).
  • W. K. Min and Y. K. Kim, Quasi Generalized Open Sets and Quasi Generalized Continuity on Bigeneralized Topological Spaces, Honam Mathematical J. 32(4) (2010) 619-624.
  • W. K. Min, Some Results on Generalized Topological Spaces and Generalized Systems, Acta. Math. Hungar. 108(1-2) (2005) 171-181.
  • J. M. Mustafa, On Binary Generalized Topological Spaces, General Letters in Mathematics 2(3) (2017) 111-116.
  • D. Andrijevi´c, On b-Open Sets, Mat. Vesnik 48 (1996) 59-64.
  • J. Dixmier, General Topology, Springer Verlag New York Inc. 1 (1984) X-141.
  • O. Nj˚astad, On Some Classes of Nearly Open Sets, Pacific J. of Math. 15(3) (1965) 961-970.
  • S. Willard, General Topology, Addison-Wesley Publishing Company, Reading, Massachusetts 18 (1970) 369.
  • A. Al-Omari and M. S. M. Noorani, On b-Closed Sets, Bull. Malays. Sci. Soc. 32(1) (2009) 19-30.
  • J. Dontchev and H. Maki, On θ-Generalized Closed Sets, Internat. J. Math. & Math. Sci. 22(2) (1999) 239-249.
  • C. Kuratowski, Sur l’Op´eration A¯ de l’Analyse Situs, Fund. Math. 3 (1922) 182-199.
  • J. F. Z. Camargo, Some Properties of Beta Hat Generalized Closed Set in Generalized Topological Spaces, International Journal for Research in Mathematics and Statistics 5(3) (2019) 1-8.
  • W. K. Min, Mixed θ-Continuity on Generalized Topological Spaces, Mathematical and Computer Modelling 54(11-12) (2011) 2597-2601.
  • V. Pankajam, On the Properties of δ-Interior and δ-Closure in Generalized Topological Spaces, International Journal for Research in Mathematical Archive 2(8) (2011) 1321-1332.
  • D. Saravanakumar and N. Kalaivani and G. S. S. Krishnan, On ˜μ-Open Sets in Generalized Topological Spaces, Malaya J. Mat. 3(3) (2015) 268-276.
  • B. K. Tyagi and R. Choudhary, On Generalized Closure Operators in Generalized Topological Spaces, International Journal of Computer Applications 82(15) (2013) 1-5.
  • W. K. Min, A Note on θ (g, g′)-Continuity in Generalized Topological Spaces, Acta. Math. Hungar. 125(4) (2009) 387-393.
  • W. K. Min, Mixed Weak Continuity on Generalized Topological Spaces, Acta. Math. Hungar. 132(4) (2011) 339-347.
  • C. Cao and J. Yan and W. Wang and B. Wang, Some Generalized Continuities Functions on Generalized Topological Spaces, Hacettepe Journal of Mathematics and Statistics 42(2) (2013) 159-163.
  • S. Srija and D. Jayanthi, gu-Semi Closed Sets in Generalized Topological Spaces, International Journal of Scientific Engineering and Applied Science (IJSEAS) 2(4) (2016) 292-294.
  • C. Boonpok, (ζ, δ (μ))-Closed Sets in Strong Generalized Topological Spaces, Cogent Mathematics & Statistics 5(1517428) (2018) 1-45.
  • K. Kannan and N. Nagaveni, On ˆβ-Generalized Closed Sets and Open Sets in Topological Spaces, Int. Journal of Math. Analysis 6(57) (2012) 2819-2828.
  • ´A. Cs´asz´ar, Generalized Topology, Generalized Continuity, Acta Math. Hungar. 96(4) (2002) 351-357.
  • V. Pavlovi´c and A. S. Cvetkovi´c, On Generalized Topologies arising from Mappings, Vesnik 38(3) (2012) 553-565.
  • ´A. Cs´asz´ar, Remarks on Quasi-Topologies, Acta Math. Hungar. 119(1-2) (2008) 197-200.
  • S. Bayhan and A. Kanibir and I. L. Reilly, On Functions between Generalized Topological Spaces, Appl. Gen. Topol. 14(2) (2013) 195-203.
  • C. Boonpok, On Generalized Continuous Maps in ˇ Cech Closure Spaces, General Mathematics 19(3) (2011) 3-10.
  • A. S. Mashhour and A. A. Allam and F. S. Mahmoud and F. H. Khedr, On Supratopological Spaces, Indian J. Pure. Appl. Math. 14(4) (1983) 502-510.
  • M. Caldas and S. Jafari and R. K. Saraf, Semi-θ-Open Sets and New Classes of Maps, Bulletin of the Iranian Mathematical Society 31(2) (2005) 37-52.
  • J. Dontchev, On Some Separation Axioms Associated with the α-Topology, 18 (1997) 31-35.
  • Y. B. Jun and S. W. Jeong and H. J. Lee and J. W. Lee, Applications of Pre-Open Sets, Applied General Topology, Universidad Polit´ecnica de Valencia 9(2) (2008) 213-228.
  • On Generalized Closed Sets in a Generalized Topological Spaces, CUBO A Mathematical Journal 18(1) (2016) 27-45.
There are 47 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Mohammad Irshad Khodabocus 0000-0003-2252-4342

Noor-ul-hacq Sookıa 0000-0002-3155-0473

Early Pub Date July 17, 2023
Publication Date July 18, 2023
Acceptance Date May 2, 2023
Published in Issue Year 2023

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.