Derleme
BibTex RIS Kaynak Göster

Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine

Yıl 2024, Cilt: 5 Sayı: 1, 17 - 30, 16.04.2024

Öz

The integration of smart textiles into healthcare has emerged as a pivotal advancement, transforming the landscape of patient care. In light of the COVID-19 pandemic, the need for remote monitoring, telemedicine, and innovative healthcare solutions has been underscored. Smart textiles, featuring embedded sensors, data processing capabilities, and connectivity, have swiftly gained prominence in diagnosis, monitoring, and therapeutic applications. This abstract explores the revolutionary potential of smart textiles in healthcare, driven by interdisciplinary collaboration, sustainability, scalability, data analytics, and patient engagement. The transformative journey ahead, with a roadmap highlighting the importance of these factors, is poised to redefine the future of healthcare, offering personalized, data-driven, and patient-centric medical services. Smart textiles have the potential to enhance patient care, improve health outcomes, and contribute to global healthcare equity, symbolizing a journey of innovation and progress in the realm of healthcare.

Kaynakça

  • References
  • [1] Chen, G. Xiao, X. Zhao, X. Tat, T. Bick, M. & Chen, J. (2021). Electronic textiles for wearable point-of-care systems. Chemical Reviews, 122(3), 3259-3291.
  • [2] Abtahi, M. Constant, N. P. Gyllinsky, J. V. Paesang, B. D’Andrea, S. E. Akbar, U. & Mankodiya, K. (2018). WearUp: Wearable smart textiles for telemedicine intervention of movement disorders. In Wearable Technology in Medicine and Healthcare, 173-192.
  • [3] Ergoktas, M. Bakan, G. Steiner, P. Bartlam, C. Malevich, Y. Ozden-Yenigun, E. He, G. Karim, N. Cataldi, P. Bissett, M. Kinloch, I. Novoselov, K. & Kocabas, C. (2020). Graphene-enabled adaptive infrared textiles. Nano letters, 20(7), 5346-5352.
  • [4] Joyce, K. (2019). Smart textiles: transforming the practice of medicalisation and health care. Sociology of health & illness, 41, 147-161.
  • [5] Uzun, S. Seyedin, S. Stoltzfus, A. L. Levitt, A. S. Alhabeb, M. Anayee, M. & Gogotsi, Y. (2019). Knittable and washable multifunctional MXene‐coated cellulose yarns. Advanced Functional Materials, 29(45), 1905015.
  • [6] Dong, X. (2019). Smart and Functional Soft Materials. BoD–Books on Demand.
  • [7] Quinn, B. (2013). Textile Visionaries: Innovation, Sustainability in Textile Design. Hachette UK.
  • [8] Wicaksono, I. Tucker, C. I. Sun, T. Guerrero, C. A. Liu, C. Woo, W. M. ... & Dagdeviren, C., (2020). A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flexible Electronics, 4(1), 5.
  • [9] McCann, J. (2023). Collaborative design principles for smart clothing. In Smart Clothes and Wearable Technology (pp. 283-325). Woodhead Publishing.
  • [10] Torres Alonso, E. Rodrigues, D. P. Khetani, M. Shin, D. W. De Sanctis, A. Joulie, H. ... & Craciun, M. F. (2018). Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. NPJ Flexible Electronics, 2(1), 25.
  • [11] Shi, X. Zuo, Y. Zhai, P. Shen, J. Yang, Y. Gao, Z. ... & Peng, H., (2021). Large-area display textiles integrated with functional systems. Nature, 591(7849), 240-245.
  • [12] Fernández-Caramés, T. M. & Fraga-Lamas, P. (2018). Towards the Internet of smart clothing: A review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics, 7(12), 405.
  • [13] Meena, J. S. Choi, S. B. Jung, S. B. & Kim, J. W. (2023). Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Materials Today Bio, 100565.
  • [14] Li, B. Xiao, G. Liu, F. Qiao, Y. Li, C. M. & Lu, Z. (2018). A flexible humidity sensor based on silk fabrics for human respiration monitoring, Journal of Materials Chemistry C, 6(16), 4549-4554.
  • [15] Zysset, C. Kinkeldei, T. W. Munzenrieder, N. Cherenack, K. & Troster, G. (2012). Integration method for electronics in woven textiles. IEEE Transactions on Components. Packaging and Manufacturing Technology, 2(7), 1107-1117.
  • [16] Zhang, M. Wang, M. Zhang, M. Qiu, L. Liu, Y. Zhang, W. & Wu, G. (2019). Flexible and highly sensitive humidity sensor based on sandwich-like Ag/Fe3O4 nanowires composite for multiple dynamic monitoring. Nanomaterials, 9(10), 1399.
  • [17] Shirvan, A. R. & Nouri, A. (2020). Medical textiles. Advances in functional and protective textiles, 291-333.
  • [18] Mečņika, V. Hoerr, M. Krieviņš, I. & Schwarz, A. (2014). Smart textiles for healthcare: applications and technologies. Rural Environment, Education, Personality, 7, 150-161.
  • [19] Yang, K. Meadmore, K. Freeman, C. Grabham, N. Hughes, A. M. Wei, Y. ... & Tudor, J. (2018). Development of user-friendly wearable electronic textiles for healthcare applications. Sensors, 18(8), 2410.
  • [20] Imani, S. Bandodkar, A. J. Mohan, A. V. Kumar, R. Yu, S. Wang, J. & Mercier, P. P. (2016). A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nature communications, 7(1), 11650.
  • [21] Kakria, P. Tripathi, N. K. & Kitipawang, P. (2015). A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. International journal of telemedicine and applications, 2015, 8-8.
  • [22] Patel, S. Park, H. Bonato, P. Chan, L. & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation, 9(1), 1-17.
  • [23] Tat, T. Chen, G. Zhao, X. Zhou, Y. Xu, J. & Chen, J. (2022). Smart textiles for healthcare and sustainability. ACS nano, 16(9), 13301-13313.
  • [24] Dong, K. Peng, X. Cheng, R. Ning, C. Jiang, Y. Zhang, Y. & Wang, Z. L. (2022). Advances in High‐Performance Autonomous Energy and Self‐Powered Sensing Textiles with Novel 3D Fabric Structures. Advanced Materials, 34(21), 2109355.
  • [25] Dong, K. & Wang, Z. L. (2021). Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. Journal of Semiconductors, 42(10), 101601.
  • [26] Dong, K. Peng, X. Cheng, R., & Wang, Z. L. (2022). Smart textile triboelectric nanogenerators: prospective strategies for improving electricity output performance. Nanoenergy Advances, 2(1), 133-164.
  • [27] Dong, K. Hu, Y. Yang, J. Kim, S. W. Hu, W. & Wang, Z. L. (2021). Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bulletin, 46(6), 512-521.
  • [28] Wu, S. Dong, T. Li, Y. Sun, M. Qi, Y. Liu, J. ... & Duan, B. (2022). State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Applied Materials Today, 27, 101473.
  • [29] Li, Y. Dong, T. Li, Z. Ni, S. Zhou, F. Alimi, O. A. ... & Wu, S. (2022). Review of advances in electrospinning-based strategies for spinal cord regeneration. Materials Today Chemistry, 24, 100944.
  • [30] Zhong, J. Li, Z. Takakuwa, M. Inoue, D. Hashizume, D. Jiang, Z. ... & Someya, T., (2022). Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Advanced Materials, 34(6), 2107758.
  • [31] Konda, A. Prakash, A. Moss, G. A. Schmoldt, M. Grant, G. D. & Guha, S. (2020). Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS nano, 14(5), 6339-6347.
  • [32] Kou, L. Xiao, S. Sun, R. Bao, S. Yao, Q. & Chen, R. (2019). Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug delivery, 26(1), 870-885.
  • [33] Trayes, K. P. Studdiford, J. S. Pickle, S. & Tully, A. S. (2013). Edema: diagnosis and management. American family physician, 88(2), 102-110.
  • [34] Fan, W. He, Q. Meng, K. Tan, X. Zhou, Z. Zhang, G. ... & Wang, Z. L. (2020). Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Science advances, 6(11), eaay2840.
  • [35] Daňová, R. Olejnik, R. Slobodian, P. & Matyas, J. (2020). The piezoresistive highly elastic sensor based on carbon nanotubes for the detection of breath. Polymers, 12(3), 713.
  • [36] Stevens, J. P. Mechanic, O. Markson, L. O'Donoghue, A. & Kimball, A. B. (2021). Telehealth use by age and race at a single academic medical center during the COVID-19 pandemic: retrospective cohort study. Journal of medical Internet research, 23(5), e23905.
  • [37] Gourevitch, R. A. Anyoha, A. Ali, M. M. & Novak, P. (2023). Use of Prenatal Telehealth in the First Year of the COVID-19 Pandemic. JAMA Network Open, 6(10), e2337978-e2337978.
  • [38] Kan, K. Heard-Garris, N. Bendelow, A. Morales, L. Lewis-Thames, M. W. Davis, M. M. & Heffernan, M. (2022). Examining access to digital technology by race and ethnicity and child health status among Chicago families. JAMA network open, 5(8), e2228992-e2228992.
  • [39] Pogorzelska, K. & Chlabicz, S. (2022). Patient satisfaction with telemedicine during the COVID-19 pandemic—a systematic review. International Journal of Environmental Research and Public Health, 19(10), 6113.
  • [40] Hoffer-Hawlik, M. A. Moran, A. E. Burka, D. Kaur, P. Cai, J. Frieden, T. R. & Gupta, R. (2020). Leveraging telemedicine for chronic disease management in low-and middle-income countries during Covid-19. Global heart, 15(1).
  • [41] Ortega, G. Rodriguez, J. A. Maurer, L. R. Witt, E. E. Perez, N. Reich, A. & Bates, D. W. (2020). Telemedicine, COVID-19, and disparities: policy implications. Health policy and Technology, 9(3), 368-371.
  • [42] Rizzi, A. M. Polachek, W. S. Dulas, M. Strelzow, J. A. & Hynes, K. K. (2020). The new ‘normal’: Rapid adoption of telemedicine in orthopaedics during the COVID-19 pandemic. Injury, 51(12), 2816-2821.
  • [43] Wang, L. Tian, M. Qi, X. Sun, X. Xu, T. Liu, X. & Qu, L. (2021). Customizable textile sensors based on helical core–spun yarns for seamless smart garments. Langmuir, 37(10), 3122-3129.
  • [44] Mason, A. Wylie, S. Korostynska, O. Cordova-Lopez, L. E. & Al-Shamma’a, A. I. (2014). Flexible e-textile sensors for real-time health monitoring at microwave frequencies. International Journal on Smart Sensing and Intelligent Systems, 7(1), 47-47.
  • [45] Arquilla, K. Webb, A. K. & Anderson, A. P. (2020). Textile electrocardiogram (ECG) electrodes for wearable health monitoring. Sensors, 20(4), 1013.
  • [46] Wang, J. Soltanian, S. Servati, P. Ko, F. & Weng, M. (2020). A knitted wearable flexible sensor for monitoring breathing condition. Journal of Engineered Fibers and Fabrics, 15, 1558925020930354.
  • [47] Shathi, M. A. Chen, M. Khoso, N. A. Rahman, M. T. & Bhattacharjee, B. (2020). Graphene coated textile based highly flexible and washable sports bra for human health monitoring. Materials & Design, 193, 108792.
  • [48] Saleh, S. M. Jusob, S. M. Harun, F. K. C. Yuliati, L. & Wicaksono, D. H. (2020). Optimization of reduced GO-based cotton electrodes for wearable electrocardiography. IEEE Sensors Journal, 20(14), 7774-7782.
  • [49] Fu, Y. Zhao, J. Dong, Y. & Wang, X. (2020). Dry electrodes for human bioelectrical signal monitoring. Sensors, 20(13), 3651.
  • [50] Nigusse, A. B. Malengier, B. Mengistie, D. A. Tseghai, G. B. & Van Langenhove, L. (2020). Development of washable silver printed textile electrodes for long-term ECG monitoring. Sensors, 20(21), 6233.
  • [51] Shi, J. Liu, S. Zhang, L. Yang, B. Shu, L. Yang, Y. ... & Tao, X. (2020). Smart textile‐integrated microelectronic systems for wearable applications. Advanced materials, 32(5), 1901958.
  • [52] Grancarić, A. M. Jerković, I. Koncar, V. Cochrane, C. Kelly, F. M. Soulat, D. & Legrand, X. (2018). Conductive polymers for smart textile applications. Journal of Industrial Textiles, 48(3), 612-642.
  • [53] Atakan, R. Tufan, H. A. Baskan, H. Eryuruk, S. H. Akalin, N. Kose, H. ... & Kalaoglu, F. (2017). Design of an electronic chest-band. In IOP conference series: materials science and engineering (Vol. 254, No. 7, p. 072002). IOP Publishing.
  • [54] Zhang, X. & Zhong, Y. (2021). A silver/silver chloride woven electrode with convex based on electrical impedance tomography. The Journal of The Textile Institute, 112(7), 1067-1079.
  • [55] Logothetis, I. Bayramol, D. V. Gil, I. Dabnichki, P. & Pirogova, E. (2020). Evaluating silver-plated nylon (Ag/PA66) e-textiles for bioelectrical impedance analysis (BIA) application. Measurement Science and Technology, 31(7), 075101.
  • [56] Kim, G. Vu, C. C. & Kim, J. (2020). Single-layer pressure textile sensors with woven conductive yarn circuit. Applied Sciences, 10(8), 2877.
  • [57] Bitar, H. & Alismail, S. (2021). The role of eHealth, telehealth, and telemedicine for chronic disease patients during COVID-19 pandemic: A rapid systematic review. Digital health, 7, 20552076211009396.
  • [58] Hincapié, M. A. Gallego, J. C. Gempeler, A. Piñeros, J. A. Nasner, D. & Escobar, M. F. (2020). Implementation and usefulness of telemedicine during the COVID-19 pandemic: a scoping review. Journal of primary care & community health, 11, 2150132720980612.
  • [59] Zhu, D. Paige, S. R. Slone, H. Gutierrez, A. Lutzky, C. Hedriana, H. & Bunnell, B. E. (2021). Exploring telemental health practice before, during, and after the COVID-19 pandemic. Journal of Telemedicine and Telecare, 1357633X211025943.
  • [60] Ghatak, B. Banerjee, S. Ali, S. B. Bandyopadhyay, R. Das, N. Mandal, D. & Tudu, B. (2021). Design of a self-powered triboelectric face mask. Nano Energy, 79, 105387.
  • [61] Ghatak, S. Khona, D. K. Sen, A. Huang, K. Jagdale, G. Singh, K. ... & Sen, C. K. (2021). Electroceutical fabric lowers zeta potential and eradicates coronavirus infectivity upon contact. Scientific reports, 11(1), 21723.
  • [62] Macharia, D. K. Ahmed, S. Zhu, B. Liu, Z. Wang, Z. Mwasiagi, J. I. & Zhu, M. (2019). UV/NIR-light-triggered rapid and reversible color switching for rewritable smart fabrics. ACS applied materials & interfaces, 11(14), 13370-13379.
  • [63] Yin, Z. Jian, M. Wang, C. Xia, K. Liu, Z. Wang, Q. & Zhang, Y. (2018). Splash-resistant and light-weight silk-sheathed wires for textile electronics. Nano letters, 18(11), 7085-7091.
  • [64] Cao, W. T. Ma, C. Mao, D. S. Zhang, J. Ma, M. G. & Chen, F. (2019). MXene‐reinforced cellulose nanofibril inks for 3D‐printed smart fibres and textiles. Advanced Functional Materials, 29(51), 1905898.
  • [65] Zhao, J. Fu, Y. Xiao, Y. Dong, Y. Wang, X. & Lin, L. (2020). A naturally integrated smart textile for wearable electronics applications. Advanced Materials Technologies, 5(1), 1900781.
  • [66] He, T. Shi, Q. Wang, H. Wen, F. Chen, T. Ouyang, J. & Lee, C. (2019). Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile. Nano Energy, 57, 338-352.
  • [67] Dias, T. & Ratnayake, A. (2015). Integration of micro-electronics with yarns for smart textiles. In Electronic Textiles, 109-116.
  • [68] Chen, Y. Deng, Z. Ouyang, R. Zheng, R. Jiang, Z. Bai, H. & Xue, H. (2021). 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy, 84, 105866.
  • [69] Papachristou, E. & Bilalis, N. (2015). How to integrate recent development in technology with Digital Prototype textile and apparel applications. Marmara Fen Bilimleri Dergisi, 27, 32-39.
  • [70] Luo, J. Gao, S. Luo, H. Wang, L. Huang, X. Guo, Z. & Gao, J. (2021). Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics, Chemical Engineering Journal, 406, 126898.
  • [71] Han, J. T. Choi, S. Jang, J. I. Seol, S. K. Woo, J. S. Jeong, H. J. & Lee, G. W. (2015). Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles. Scientific Reports, 5(1), 9300.
  • [72] Shin, Y. E. Cho, J. Y. Yeom, J. Ko, H. & Han, J. T. (2021). Electronic textiles based on highly conducting poly (vinyl alcohol)/carbon nanotube/silver nanobelt hybrid fibers. ACS Applied Materials & Interfaces, 13(26), 31051-31058.
  • [73] Chiu, C. H. & Cheng, C. C. (2003). Weaving method of 3D woven preforms for advanced composite materials. Textile Research Journal, 73(1), 37-41.
  • [74] Smith, M. A. & Chen, X. (2009). CAD/CAM algorithms for 3D woven multilayer textile structures. International Journal of Materials and Textile Engineering, 3(9), 543-554.
  • [75] Tseghai, G. B. Malengier, B. Fante, K. A. Nigusse, A. B. & Van Langenhove, L. (2020). Integration of conductive materials with textile structures, an overview. Sensors, 20(23), 6910.
  • [76] Valentine, A. D. Busbee, T. A. Boley, J. W. Raney, J. R. Chortos, A. Kotikian, A. & Lewis, J. A. (2017). Hybrid 3D printing of soft electronics, advanced Materials, 29(40), 1703817.
  • [77] Parlin, A. F. Stratton, S. M. Culley, T. M. & Guerra, P. A. (2020). A laboratory-based study examining the properties of silk fabric to evaluate its potential as a protective barrier for personal protective equipment and as a functional material for face coverings during the COVID-19 pandemic, Plos one, 15(9), e0239531.
  • [78] Chen, K. Zhou, J. Che, X. Zhao, R. & Gao, Q. (2020). One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings. Journal of colloid and interface science, 566, 401-410.
  • [79] Liu, X. Miao, J. Fan, Q. Zhang, W. Zuo, X. Tian, M. & Qu, L. (2021). Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS applied materials & interfaces, 13(47), 56607-56619.
  • [80] Rai, P. Kumar, P. S. Oh, S. Kwon, H. Mathur, G. N. Varadan, V. K. & Agarwal, M. P. (2012). Smart healthcare textile sensor system for unhindered-pervasive health monitoring. In Nanosensors, Biosensors, and Info-Tech Sensors and Systems, 8344, 74-83
  • [81] Koyama, Y. Nishiyama, M. & Watanabe, K. (2018). Smart textile using hetero-core optical fiber for heartbeat and respiration monitoring. IEEE Sensors Journal, 18, 6175-6180.
  • [82] Escobedo, P. Bhattacharjee, M. Nikbakhtnasrabadi, F. & Dahiya, R. (2020). Smart bandage with wireless strain and temperature sensors and batteryless NFC tag. IEEE Internet of Things Journal, 8, 5093-5100.
  • [83] Chen, G. Li, Y. Bick, M. & Chen, J. (2020). Smart textiles for electricity generation. Chemical Reviews, 120(8), 3668-3720.
  • [84] Zhao, X. Wang, L. Tang, C. Zha, X. Liu, Y. Su, B. Ke, K. Bao, R. Yang, M. & Yang, W. (2020). Smart Ti3C2T x MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. Acs Nano, 14(7), 8793-8805.
  • [85] Jao, Y. T. Yang, P. K. Chiu, C. M. Lin, Y. J. Chen, S. W. Choi, D. & Lin, Z. H. (2018). A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy, 50, 513-520.
  • [86] Esfahani, M. I. M. (2021). Smart textiles in healthcare: a summary of history, types, applications, challenges, and future trends. In Nanosensors and Nanodevices for Smart Multifunctional Textiles 93-107.
  • [87] He, X. Fan, C. Xu, T. & Zhang, X. (2021). Biospired Janus silk E-textiles with wet–thermal comfort for highly efficient biofluid monitoring. Nano Letters, 21(20), 8880-8887.
  • [88] Li, Z. Li, M. Fan, Q. Qi, X. Qu, L. & Tian, M. (2021). Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications. ACS Applied Materials & Interfaces, 13(12), 14778-14785.
  • [89] Simon, E. P. Kallmayer, C. Schneider-Ramelow, M. & Lang, K. D. (2012). Development of a multi-terminal crimp package for smart textile integration. In 2012 4th Electronic System-Integration Technology Conference 1-6.
  • [90] Yokus, M. A. Foote, R. & Jur, J. S. (2016). Printed stretchable interconnects for smart garments: design, fabrication, and characterization. IEEE Sensors Journal, 16(22), 7967-7976.
  • [91] Choudhry, N. A. Arnold, L. Rasheed, A. Khan, I. A. & Wang, L. (2021). Textronics—a review of textile‐based wearable electronics. Advanced Engineering Materials, 23(12), 2100.

Teletıpta Üretim Teknikleri, Uygulamalar ve Covid-19 Sonrası İhtiyaç Analizi

Yıl 2024, Cilt: 5 Sayı: 1, 17 - 30, 16.04.2024

Öz

Akıllı tekstillerin sağlık hizmetlerine entegrasyonu, hasta bakımı ortamını dönüştüren çok önemli bir gelişme olarak ortaya çıkmıştır. COVID-19 salgını ışığında, uzaktan izleme, teletıp ve yenilikçi sağlık çözümlerine duyulan ihtiyacın altı çizildi. Gömülü sensörler, veri işleme yetenekleri ve bağlanabilirlik özelliklerine sahip akıllı tekstiller, teşhis, izleme ve tedavi uygulamalarında hızla önem kazanmıştır. Bu bildiri, disiplinler arası işbirliği, sürdürülebilirlik, ölçeklenebilirlik, veri analitiği ve hasta katılımı ile sağlık hizmetlerinde akıllı tekstillerin devrim niteliğindeki potansiyelini araştırmaktadır. Bu faktörlerin önemini vurgulayan bir yol haritası ile önümüzdeki dönüştürücü yolculuk, kişiselleştirilmiş, veri odaklı ve hasta merkezli tıbbi hizmetler sunarak sağlık hizmetlerinin geleceğini yeniden tanımlamaya hazırlanıyor. Akıllı tekstiller, hasta bakımını geliştirme, sağlık sonuçlarını iyileştirme ve küresel sağlık eşitliğine katkıda bulunma potansiyeline sahiptir ve sağlık alanında bir yenilik ve ilerleme yolculuğunu simgelemektedir.

Kaynakça

  • References
  • [1] Chen, G. Xiao, X. Zhao, X. Tat, T. Bick, M. & Chen, J. (2021). Electronic textiles for wearable point-of-care systems. Chemical Reviews, 122(3), 3259-3291.
  • [2] Abtahi, M. Constant, N. P. Gyllinsky, J. V. Paesang, B. D’Andrea, S. E. Akbar, U. & Mankodiya, K. (2018). WearUp: Wearable smart textiles for telemedicine intervention of movement disorders. In Wearable Technology in Medicine and Healthcare, 173-192.
  • [3] Ergoktas, M. Bakan, G. Steiner, P. Bartlam, C. Malevich, Y. Ozden-Yenigun, E. He, G. Karim, N. Cataldi, P. Bissett, M. Kinloch, I. Novoselov, K. & Kocabas, C. (2020). Graphene-enabled adaptive infrared textiles. Nano letters, 20(7), 5346-5352.
  • [4] Joyce, K. (2019). Smart textiles: transforming the practice of medicalisation and health care. Sociology of health & illness, 41, 147-161.
  • [5] Uzun, S. Seyedin, S. Stoltzfus, A. L. Levitt, A. S. Alhabeb, M. Anayee, M. & Gogotsi, Y. (2019). Knittable and washable multifunctional MXene‐coated cellulose yarns. Advanced Functional Materials, 29(45), 1905015.
  • [6] Dong, X. (2019). Smart and Functional Soft Materials. BoD–Books on Demand.
  • [7] Quinn, B. (2013). Textile Visionaries: Innovation, Sustainability in Textile Design. Hachette UK.
  • [8] Wicaksono, I. Tucker, C. I. Sun, T. Guerrero, C. A. Liu, C. Woo, W. M. ... & Dagdeviren, C., (2020). A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flexible Electronics, 4(1), 5.
  • [9] McCann, J. (2023). Collaborative design principles for smart clothing. In Smart Clothes and Wearable Technology (pp. 283-325). Woodhead Publishing.
  • [10] Torres Alonso, E. Rodrigues, D. P. Khetani, M. Shin, D. W. De Sanctis, A. Joulie, H. ... & Craciun, M. F. (2018). Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. NPJ Flexible Electronics, 2(1), 25.
  • [11] Shi, X. Zuo, Y. Zhai, P. Shen, J. Yang, Y. Gao, Z. ... & Peng, H., (2021). Large-area display textiles integrated with functional systems. Nature, 591(7849), 240-245.
  • [12] Fernández-Caramés, T. M. & Fraga-Lamas, P. (2018). Towards the Internet of smart clothing: A review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics, 7(12), 405.
  • [13] Meena, J. S. Choi, S. B. Jung, S. B. & Kim, J. W. (2023). Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Materials Today Bio, 100565.
  • [14] Li, B. Xiao, G. Liu, F. Qiao, Y. Li, C. M. & Lu, Z. (2018). A flexible humidity sensor based on silk fabrics for human respiration monitoring, Journal of Materials Chemistry C, 6(16), 4549-4554.
  • [15] Zysset, C. Kinkeldei, T. W. Munzenrieder, N. Cherenack, K. & Troster, G. (2012). Integration method for electronics in woven textiles. IEEE Transactions on Components. Packaging and Manufacturing Technology, 2(7), 1107-1117.
  • [16] Zhang, M. Wang, M. Zhang, M. Qiu, L. Liu, Y. Zhang, W. & Wu, G. (2019). Flexible and highly sensitive humidity sensor based on sandwich-like Ag/Fe3O4 nanowires composite for multiple dynamic monitoring. Nanomaterials, 9(10), 1399.
  • [17] Shirvan, A. R. & Nouri, A. (2020). Medical textiles. Advances in functional and protective textiles, 291-333.
  • [18] Mečņika, V. Hoerr, M. Krieviņš, I. & Schwarz, A. (2014). Smart textiles for healthcare: applications and technologies. Rural Environment, Education, Personality, 7, 150-161.
  • [19] Yang, K. Meadmore, K. Freeman, C. Grabham, N. Hughes, A. M. Wei, Y. ... & Tudor, J. (2018). Development of user-friendly wearable electronic textiles for healthcare applications. Sensors, 18(8), 2410.
  • [20] Imani, S. Bandodkar, A. J. Mohan, A. V. Kumar, R. Yu, S. Wang, J. & Mercier, P. P. (2016). A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nature communications, 7(1), 11650.
  • [21] Kakria, P. Tripathi, N. K. & Kitipawang, P. (2015). A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. International journal of telemedicine and applications, 2015, 8-8.
  • [22] Patel, S. Park, H. Bonato, P. Chan, L. & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation, 9(1), 1-17.
  • [23] Tat, T. Chen, G. Zhao, X. Zhou, Y. Xu, J. & Chen, J. (2022). Smart textiles for healthcare and sustainability. ACS nano, 16(9), 13301-13313.
  • [24] Dong, K. Peng, X. Cheng, R. Ning, C. Jiang, Y. Zhang, Y. & Wang, Z. L. (2022). Advances in High‐Performance Autonomous Energy and Self‐Powered Sensing Textiles with Novel 3D Fabric Structures. Advanced Materials, 34(21), 2109355.
  • [25] Dong, K. & Wang, Z. L. (2021). Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. Journal of Semiconductors, 42(10), 101601.
  • [26] Dong, K. Peng, X. Cheng, R., & Wang, Z. L. (2022). Smart textile triboelectric nanogenerators: prospective strategies for improving electricity output performance. Nanoenergy Advances, 2(1), 133-164.
  • [27] Dong, K. Hu, Y. Yang, J. Kim, S. W. Hu, W. & Wang, Z. L. (2021). Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bulletin, 46(6), 512-521.
  • [28] Wu, S. Dong, T. Li, Y. Sun, M. Qi, Y. Liu, J. ... & Duan, B. (2022). State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Applied Materials Today, 27, 101473.
  • [29] Li, Y. Dong, T. Li, Z. Ni, S. Zhou, F. Alimi, O. A. ... & Wu, S. (2022). Review of advances in electrospinning-based strategies for spinal cord regeneration. Materials Today Chemistry, 24, 100944.
  • [30] Zhong, J. Li, Z. Takakuwa, M. Inoue, D. Hashizume, D. Jiang, Z. ... & Someya, T., (2022). Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Advanced Materials, 34(6), 2107758.
  • [31] Konda, A. Prakash, A. Moss, G. A. Schmoldt, M. Grant, G. D. & Guha, S. (2020). Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS nano, 14(5), 6339-6347.
  • [32] Kou, L. Xiao, S. Sun, R. Bao, S. Yao, Q. & Chen, R. (2019). Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug delivery, 26(1), 870-885.
  • [33] Trayes, K. P. Studdiford, J. S. Pickle, S. & Tully, A. S. (2013). Edema: diagnosis and management. American family physician, 88(2), 102-110.
  • [34] Fan, W. He, Q. Meng, K. Tan, X. Zhou, Z. Zhang, G. ... & Wang, Z. L. (2020). Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Science advances, 6(11), eaay2840.
  • [35] Daňová, R. Olejnik, R. Slobodian, P. & Matyas, J. (2020). The piezoresistive highly elastic sensor based on carbon nanotubes for the detection of breath. Polymers, 12(3), 713.
  • [36] Stevens, J. P. Mechanic, O. Markson, L. O'Donoghue, A. & Kimball, A. B. (2021). Telehealth use by age and race at a single academic medical center during the COVID-19 pandemic: retrospective cohort study. Journal of medical Internet research, 23(5), e23905.
  • [37] Gourevitch, R. A. Anyoha, A. Ali, M. M. & Novak, P. (2023). Use of Prenatal Telehealth in the First Year of the COVID-19 Pandemic. JAMA Network Open, 6(10), e2337978-e2337978.
  • [38] Kan, K. Heard-Garris, N. Bendelow, A. Morales, L. Lewis-Thames, M. W. Davis, M. M. & Heffernan, M. (2022). Examining access to digital technology by race and ethnicity and child health status among Chicago families. JAMA network open, 5(8), e2228992-e2228992.
  • [39] Pogorzelska, K. & Chlabicz, S. (2022). Patient satisfaction with telemedicine during the COVID-19 pandemic—a systematic review. International Journal of Environmental Research and Public Health, 19(10), 6113.
  • [40] Hoffer-Hawlik, M. A. Moran, A. E. Burka, D. Kaur, P. Cai, J. Frieden, T. R. & Gupta, R. (2020). Leveraging telemedicine for chronic disease management in low-and middle-income countries during Covid-19. Global heart, 15(1).
  • [41] Ortega, G. Rodriguez, J. A. Maurer, L. R. Witt, E. E. Perez, N. Reich, A. & Bates, D. W. (2020). Telemedicine, COVID-19, and disparities: policy implications. Health policy and Technology, 9(3), 368-371.
  • [42] Rizzi, A. M. Polachek, W. S. Dulas, M. Strelzow, J. A. & Hynes, K. K. (2020). The new ‘normal’: Rapid adoption of telemedicine in orthopaedics during the COVID-19 pandemic. Injury, 51(12), 2816-2821.
  • [43] Wang, L. Tian, M. Qi, X. Sun, X. Xu, T. Liu, X. & Qu, L. (2021). Customizable textile sensors based on helical core–spun yarns for seamless smart garments. Langmuir, 37(10), 3122-3129.
  • [44] Mason, A. Wylie, S. Korostynska, O. Cordova-Lopez, L. E. & Al-Shamma’a, A. I. (2014). Flexible e-textile sensors for real-time health monitoring at microwave frequencies. International Journal on Smart Sensing and Intelligent Systems, 7(1), 47-47.
  • [45] Arquilla, K. Webb, A. K. & Anderson, A. P. (2020). Textile electrocardiogram (ECG) electrodes for wearable health monitoring. Sensors, 20(4), 1013.
  • [46] Wang, J. Soltanian, S. Servati, P. Ko, F. & Weng, M. (2020). A knitted wearable flexible sensor for monitoring breathing condition. Journal of Engineered Fibers and Fabrics, 15, 1558925020930354.
  • [47] Shathi, M. A. Chen, M. Khoso, N. A. Rahman, M. T. & Bhattacharjee, B. (2020). Graphene coated textile based highly flexible and washable sports bra for human health monitoring. Materials & Design, 193, 108792.
  • [48] Saleh, S. M. Jusob, S. M. Harun, F. K. C. Yuliati, L. & Wicaksono, D. H. (2020). Optimization of reduced GO-based cotton electrodes for wearable electrocardiography. IEEE Sensors Journal, 20(14), 7774-7782.
  • [49] Fu, Y. Zhao, J. Dong, Y. & Wang, X. (2020). Dry electrodes for human bioelectrical signal monitoring. Sensors, 20(13), 3651.
  • [50] Nigusse, A. B. Malengier, B. Mengistie, D. A. Tseghai, G. B. & Van Langenhove, L. (2020). Development of washable silver printed textile electrodes for long-term ECG monitoring. Sensors, 20(21), 6233.
  • [51] Shi, J. Liu, S. Zhang, L. Yang, B. Shu, L. Yang, Y. ... & Tao, X. (2020). Smart textile‐integrated microelectronic systems for wearable applications. Advanced materials, 32(5), 1901958.
  • [52] Grancarić, A. M. Jerković, I. Koncar, V. Cochrane, C. Kelly, F. M. Soulat, D. & Legrand, X. (2018). Conductive polymers for smart textile applications. Journal of Industrial Textiles, 48(3), 612-642.
  • [53] Atakan, R. Tufan, H. A. Baskan, H. Eryuruk, S. H. Akalin, N. Kose, H. ... & Kalaoglu, F. (2017). Design of an electronic chest-band. In IOP conference series: materials science and engineering (Vol. 254, No. 7, p. 072002). IOP Publishing.
  • [54] Zhang, X. & Zhong, Y. (2021). A silver/silver chloride woven electrode with convex based on electrical impedance tomography. The Journal of The Textile Institute, 112(7), 1067-1079.
  • [55] Logothetis, I. Bayramol, D. V. Gil, I. Dabnichki, P. & Pirogova, E. (2020). Evaluating silver-plated nylon (Ag/PA66) e-textiles for bioelectrical impedance analysis (BIA) application. Measurement Science and Technology, 31(7), 075101.
  • [56] Kim, G. Vu, C. C. & Kim, J. (2020). Single-layer pressure textile sensors with woven conductive yarn circuit. Applied Sciences, 10(8), 2877.
  • [57] Bitar, H. & Alismail, S. (2021). The role of eHealth, telehealth, and telemedicine for chronic disease patients during COVID-19 pandemic: A rapid systematic review. Digital health, 7, 20552076211009396.
  • [58] Hincapié, M. A. Gallego, J. C. Gempeler, A. Piñeros, J. A. Nasner, D. & Escobar, M. F. (2020). Implementation and usefulness of telemedicine during the COVID-19 pandemic: a scoping review. Journal of primary care & community health, 11, 2150132720980612.
  • [59] Zhu, D. Paige, S. R. Slone, H. Gutierrez, A. Lutzky, C. Hedriana, H. & Bunnell, B. E. (2021). Exploring telemental health practice before, during, and after the COVID-19 pandemic. Journal of Telemedicine and Telecare, 1357633X211025943.
  • [60] Ghatak, B. Banerjee, S. Ali, S. B. Bandyopadhyay, R. Das, N. Mandal, D. & Tudu, B. (2021). Design of a self-powered triboelectric face mask. Nano Energy, 79, 105387.
  • [61] Ghatak, S. Khona, D. K. Sen, A. Huang, K. Jagdale, G. Singh, K. ... & Sen, C. K. (2021). Electroceutical fabric lowers zeta potential and eradicates coronavirus infectivity upon contact. Scientific reports, 11(1), 21723.
  • [62] Macharia, D. K. Ahmed, S. Zhu, B. Liu, Z. Wang, Z. Mwasiagi, J. I. & Zhu, M. (2019). UV/NIR-light-triggered rapid and reversible color switching for rewritable smart fabrics. ACS applied materials & interfaces, 11(14), 13370-13379.
  • [63] Yin, Z. Jian, M. Wang, C. Xia, K. Liu, Z. Wang, Q. & Zhang, Y. (2018). Splash-resistant and light-weight silk-sheathed wires for textile electronics. Nano letters, 18(11), 7085-7091.
  • [64] Cao, W. T. Ma, C. Mao, D. S. Zhang, J. Ma, M. G. & Chen, F. (2019). MXene‐reinforced cellulose nanofibril inks for 3D‐printed smart fibres and textiles. Advanced Functional Materials, 29(51), 1905898.
  • [65] Zhao, J. Fu, Y. Xiao, Y. Dong, Y. Wang, X. & Lin, L. (2020). A naturally integrated smart textile for wearable electronics applications. Advanced Materials Technologies, 5(1), 1900781.
  • [66] He, T. Shi, Q. Wang, H. Wen, F. Chen, T. Ouyang, J. & Lee, C. (2019). Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile. Nano Energy, 57, 338-352.
  • [67] Dias, T. & Ratnayake, A. (2015). Integration of micro-electronics with yarns for smart textiles. In Electronic Textiles, 109-116.
  • [68] Chen, Y. Deng, Z. Ouyang, R. Zheng, R. Jiang, Z. Bai, H. & Xue, H. (2021). 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy, 84, 105866.
  • [69] Papachristou, E. & Bilalis, N. (2015). How to integrate recent development in technology with Digital Prototype textile and apparel applications. Marmara Fen Bilimleri Dergisi, 27, 32-39.
  • [70] Luo, J. Gao, S. Luo, H. Wang, L. Huang, X. Guo, Z. & Gao, J. (2021). Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics, Chemical Engineering Journal, 406, 126898.
  • [71] Han, J. T. Choi, S. Jang, J. I. Seol, S. K. Woo, J. S. Jeong, H. J. & Lee, G. W. (2015). Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles. Scientific Reports, 5(1), 9300.
  • [72] Shin, Y. E. Cho, J. Y. Yeom, J. Ko, H. & Han, J. T. (2021). Electronic textiles based on highly conducting poly (vinyl alcohol)/carbon nanotube/silver nanobelt hybrid fibers. ACS Applied Materials & Interfaces, 13(26), 31051-31058.
  • [73] Chiu, C. H. & Cheng, C. C. (2003). Weaving method of 3D woven preforms for advanced composite materials. Textile Research Journal, 73(1), 37-41.
  • [74] Smith, M. A. & Chen, X. (2009). CAD/CAM algorithms for 3D woven multilayer textile structures. International Journal of Materials and Textile Engineering, 3(9), 543-554.
  • [75] Tseghai, G. B. Malengier, B. Fante, K. A. Nigusse, A. B. & Van Langenhove, L. (2020). Integration of conductive materials with textile structures, an overview. Sensors, 20(23), 6910.
  • [76] Valentine, A. D. Busbee, T. A. Boley, J. W. Raney, J. R. Chortos, A. Kotikian, A. & Lewis, J. A. (2017). Hybrid 3D printing of soft electronics, advanced Materials, 29(40), 1703817.
  • [77] Parlin, A. F. Stratton, S. M. Culley, T. M. & Guerra, P. A. (2020). A laboratory-based study examining the properties of silk fabric to evaluate its potential as a protective barrier for personal protective equipment and as a functional material for face coverings during the COVID-19 pandemic, Plos one, 15(9), e0239531.
  • [78] Chen, K. Zhou, J. Che, X. Zhao, R. & Gao, Q. (2020). One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings. Journal of colloid and interface science, 566, 401-410.
  • [79] Liu, X. Miao, J. Fan, Q. Zhang, W. Zuo, X. Tian, M. & Qu, L. (2021). Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS applied materials & interfaces, 13(47), 56607-56619.
  • [80] Rai, P. Kumar, P. S. Oh, S. Kwon, H. Mathur, G. N. Varadan, V. K. & Agarwal, M. P. (2012). Smart healthcare textile sensor system for unhindered-pervasive health monitoring. In Nanosensors, Biosensors, and Info-Tech Sensors and Systems, 8344, 74-83
  • [81] Koyama, Y. Nishiyama, M. & Watanabe, K. (2018). Smart textile using hetero-core optical fiber for heartbeat and respiration monitoring. IEEE Sensors Journal, 18, 6175-6180.
  • [82] Escobedo, P. Bhattacharjee, M. Nikbakhtnasrabadi, F. & Dahiya, R. (2020). Smart bandage with wireless strain and temperature sensors and batteryless NFC tag. IEEE Internet of Things Journal, 8, 5093-5100.
  • [83] Chen, G. Li, Y. Bick, M. & Chen, J. (2020). Smart textiles for electricity generation. Chemical Reviews, 120(8), 3668-3720.
  • [84] Zhao, X. Wang, L. Tang, C. Zha, X. Liu, Y. Su, B. Ke, K. Bao, R. Yang, M. & Yang, W. (2020). Smart Ti3C2T x MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. Acs Nano, 14(7), 8793-8805.
  • [85] Jao, Y. T. Yang, P. K. Chiu, C. M. Lin, Y. J. Chen, S. W. Choi, D. & Lin, Z. H. (2018). A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy, 50, 513-520.
  • [86] Esfahani, M. I. M. (2021). Smart textiles in healthcare: a summary of history, types, applications, challenges, and future trends. In Nanosensors and Nanodevices for Smart Multifunctional Textiles 93-107.
  • [87] He, X. Fan, C. Xu, T. & Zhang, X. (2021). Biospired Janus silk E-textiles with wet–thermal comfort for highly efficient biofluid monitoring. Nano Letters, 21(20), 8880-8887.
  • [88] Li, Z. Li, M. Fan, Q. Qi, X. Qu, L. & Tian, M. (2021). Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications. ACS Applied Materials & Interfaces, 13(12), 14778-14785.
  • [89] Simon, E. P. Kallmayer, C. Schneider-Ramelow, M. & Lang, K. D. (2012). Development of a multi-terminal crimp package for smart textile integration. In 2012 4th Electronic System-Integration Technology Conference 1-6.
  • [90] Yokus, M. A. Foote, R. & Jur, J. S. (2016). Printed stretchable interconnects for smart garments: design, fabrication, and characterization. IEEE Sensors Journal, 16(22), 7967-7976.
  • [91] Choudhry, N. A. Arnold, L. Rasheed, A. Khan, I. A. & Wang, L. (2021). Textronics—a review of textile‐based wearable electronics. Advanced Engineering Materials, 23(12), 2100.
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Derlemeler
Yazarlar

Aslıhan Akdeniz 0000-0001-8451-9253

Mustafa Veziroğlu 0009-0009-5705-4206

Refik Akgün 0009-0003-8974-8575

Orhan Kozakbaş 0009-0006-3482-3744

Sude İnal 0009-0000-1710-2175

Ahmet Koluman 0000-0001-5308-8884

Yayımlanma Tarihi 16 Nisan 2024
Gönderilme Tarihi 16 Kasım 2023
Kabul Tarihi 24 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

APA Akdeniz, A., Veziroğlu, M., Akgün, R., Kozakbaş, O., vd. (2024). Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine. Research Journal of Biomedical and Biotechnology, 5(1), 17-30.
AMA Akdeniz A, Veziroğlu M, Akgün R, Kozakbaş O, İnal S, Koluman A. Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine. RJBB. Nisan 2024;5(1):17-30.
Chicago Akdeniz, Aslıhan, Mustafa Veziroğlu, Refik Akgün, Orhan Kozakbaş, Sude İnal, ve Ahmet Koluman. “Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine”. Research Journal of Biomedical and Biotechnology 5, sy. 1 (Nisan 2024): 17-30.
EndNote Akdeniz A, Veziroğlu M, Akgün R, Kozakbaş O, İnal S, Koluman A (01 Nisan 2024) Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine. Research Journal of Biomedical and Biotechnology 5 1 17–30.
IEEE A. Akdeniz, M. Veziroğlu, R. Akgün, O. Kozakbaş, S. İnal, ve A. Koluman, “Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine”, RJBB, c. 5, sy. 1, ss. 17–30, 2024.
ISNAD Akdeniz, Aslıhan vd. “Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine”. Research Journal of Biomedical and Biotechnology 5/1 (Nisan 2024), 17-30.
JAMA Akdeniz A, Veziroğlu M, Akgün R, Kozakbaş O, İnal S, Koluman A. Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine. RJBB. 2024;5:17–30.
MLA Akdeniz, Aslıhan vd. “Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine”. Research Journal of Biomedical and Biotechnology, c. 5, sy. 1, 2024, ss. 17-30.
Vancouver Akdeniz A, Veziroğlu M, Akgün R, Kozakbaş O, İnal S, Koluman A. Production Techniques, Applications And Post-Covid19 Needs Analysis In Telemedicine. RJBB. 2024;5(1):17-30.